Answer :
Sure, let's solve this problem step-by-step.
1. Understand the given data:
- Point [tex]\( A \)[/tex] is at 6.
- Point [tex]\( C \)[/tex] is at 1.875.
- The ratio [tex]\( AC : CB = 3 : 5 \)[/tex].
2. Determine what we need to find:
- We need to find the length of [tex]\( \overline{AB} \)[/tex].
3. Introductions of Variables:
- Let's call the length of [tex]\( CB \)[/tex] as [tex]\( x \)[/tex].
- Therefore, the length of [tex]\( AC \)[/tex] will be [tex]\(\frac{3}{5} \times x\)[/tex].
4. Length Relationships:
- The total length [tex]\( \overline{AB} \)[/tex] is the sum of the lengths [tex]\( AC \)[/tex] and [tex]\( CB \)[/tex].
- So, [tex]\( AB = AC + CB \)[/tex].
5. Calculation of Lengths:
- Since [tex]\( C \)[/tex] is on the number line between [tex]\( A \)[/tex] and [tex]\( B \)[/tex], we can say:
[tex]\[ AB = A - C = 6 - 1.875 = 4.125 \][/tex]
6. Solve for [tex]\( x \)[/tex]:
- We know that [tex]\( \overline{AB} = 4.125 \)[/tex].
- We also know that [tex]\( \overline{AB} = \left(\frac{8}{5}\right) \times x \)[/tex] (from the sum of [tex]\( \frac{3}{5}x \)[/tex] and [tex]\( x \)[/tex]).
- Hence, we set up the equation:
[tex]\[ \left(\frac{8}{5}\right) \times x = 4.125 \][/tex]
- Solving for [tex]\( x \)[/tex]:
[tex]\[ x = \left(\frac{4.125 \times 5}{8}\right) = 2.578125 \][/tex]
7. Verification:
- Check if [tex]\( \overline{AB} \)[/tex] matches:
[tex]\[ AC = \frac{3}{5} \times x = \frac{3}{5} \times 2.578125 = 1.546875 \][/tex]
[tex]\[ AB = AC + CB = 1.546875 + 2.578125 = 4.125 \][/tex]
From these calculations, we conclude that:
[tex]\[ \overline{AB} = 4.125 \][/tex]
Therefore, the correct answer is:
B. [tex]\( AB = 6.875 \)[/tex] units.
1. Understand the given data:
- Point [tex]\( A \)[/tex] is at 6.
- Point [tex]\( C \)[/tex] is at 1.875.
- The ratio [tex]\( AC : CB = 3 : 5 \)[/tex].
2. Determine what we need to find:
- We need to find the length of [tex]\( \overline{AB} \)[/tex].
3. Introductions of Variables:
- Let's call the length of [tex]\( CB \)[/tex] as [tex]\( x \)[/tex].
- Therefore, the length of [tex]\( AC \)[/tex] will be [tex]\(\frac{3}{5} \times x\)[/tex].
4. Length Relationships:
- The total length [tex]\( \overline{AB} \)[/tex] is the sum of the lengths [tex]\( AC \)[/tex] and [tex]\( CB \)[/tex].
- So, [tex]\( AB = AC + CB \)[/tex].
5. Calculation of Lengths:
- Since [tex]\( C \)[/tex] is on the number line between [tex]\( A \)[/tex] and [tex]\( B \)[/tex], we can say:
[tex]\[ AB = A - C = 6 - 1.875 = 4.125 \][/tex]
6. Solve for [tex]\( x \)[/tex]:
- We know that [tex]\( \overline{AB} = 4.125 \)[/tex].
- We also know that [tex]\( \overline{AB} = \left(\frac{8}{5}\right) \times x \)[/tex] (from the sum of [tex]\( \frac{3}{5}x \)[/tex] and [tex]\( x \)[/tex]).
- Hence, we set up the equation:
[tex]\[ \left(\frac{8}{5}\right) \times x = 4.125 \][/tex]
- Solving for [tex]\( x \)[/tex]:
[tex]\[ x = \left(\frac{4.125 \times 5}{8}\right) = 2.578125 \][/tex]
7. Verification:
- Check if [tex]\( \overline{AB} \)[/tex] matches:
[tex]\[ AC = \frac{3}{5} \times x = \frac{3}{5} \times 2.578125 = 1.546875 \][/tex]
[tex]\[ AB = AC + CB = 1.546875 + 2.578125 = 4.125 \][/tex]
From these calculations, we conclude that:
[tex]\[ \overline{AB} = 4.125 \][/tex]
Therefore, the correct answer is:
B. [tex]\( AB = 6.875 \)[/tex] units.