The circle below is centered at the point [tex](4, -3)[/tex] and has a radius of length 3. What is its equation?

A. [tex](x - 3)^2 + (y - 4)^2 = 9[/tex]

B. [tex](x + 4)^2 + (y - 3)^2 = 3^2[/tex]

C. [tex](x - 3)^2 + (y + 4)^2 = 9[/tex]

D. [tex](x - 4)^2 + (y + 3)^2 = 3^2[/tex]



Answer :

To determine the equation of a circle given its center and radius, we use the standard form of the circle equation:

[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]

where [tex]\((h, k)\)[/tex] is the center of the circle and [tex]\(r\)[/tex] is the radius.

Here, we are given:
- The center of the circle [tex]\((h, k)\)[/tex] is [tex]\((4, -3)\)[/tex]
- The radius [tex]\(r\)[/tex] is [tex]\(3\)[/tex]

Substituting these values into the standard form equation, we have:

[tex]\[ (x - 4)^2 + (y + 3)^2 = 3^2 \][/tex]

Therefore, the equation of the circle is:

[tex]\[ (x - 4)^2 + (y + 3)^2 = 3^2 \][/tex]

Looking at the provided options, the correct answer is:

D. [tex]\((x - 4)^2 + (y + 3)^2 = 3^2\)[/tex]