Answer :
Let's analyze the given data to find the relative frequencies for the whole table.
Here is the summarized two-way frequency table with absolute numbers:
\begin{tabular}{|c|c|c|c|c|c|}
\cline { 2 - 5 } \multicolumn{1}{c|}{} & CA & TX & NY & FL & Total \\
\hline Boys & 84 & 38 & 64 & 44 & 230 \\
\hline Girls & 50 & 44 & 26 & 50 & 170 \\
\hline Total & 134 & 82 & 90 & 94 & 400 \\
\hline
\end{tabular}
To convert these into relative frequencies, we use the totals for boys (230), girls (170), and overall students (400). Here are the relative frequencies provided from the answer:
Relative Frequencies for Boys:
- CA: 0.3652173913043478
- TX: 0.16521739130434782
- NY: 0.2782608695652174
- FL: 0.19130434782608696
- Total: 0.575
Relative Frequencies for Girls:
- CA: 0.29411764705882354
- TX: 0.25882352941176473
- NY: 0.15294117647058825
- FL: 0.29411764705882354
- Total: 0.425
Relative Frequencies for Total:
- CA: 0.335
- TX: 0.205
- NY: 0.225
- FL: 0.235
- Total: 1.0
Now, we can put these values back into the two-way table format:
\begin{tabular}{|c|c|c|c|c|c|}
\cline { 2 - 6 } \multicolumn{1}{c|}{} & CA & TX & NY & FL & Total \\
\hline Boys & 0.365 & 0.165 & 0.278 & 0.191 & 0.575 \\
\hline Girls & 0.294 & 0.259 & 0.153 & 0.294 & 0.425 \\
\hline Total & 0.335 & 0.205 & 0.225 & 0.235 & 1.000 \\
\hline
\end{tabular}
Upon evaluating the multiple-choice options, it is clear that none of these options match the calculated relative frequency table. The correct calculations are as tabulated above, and option A does not represent the correct relative frequencies.
Thus, none of the given options (including A) accurately represents the relative frequency for the whole table in this situation.
Here is the summarized two-way frequency table with absolute numbers:
\begin{tabular}{|c|c|c|c|c|c|}
\cline { 2 - 5 } \multicolumn{1}{c|}{} & CA & TX & NY & FL & Total \\
\hline Boys & 84 & 38 & 64 & 44 & 230 \\
\hline Girls & 50 & 44 & 26 & 50 & 170 \\
\hline Total & 134 & 82 & 90 & 94 & 400 \\
\hline
\end{tabular}
To convert these into relative frequencies, we use the totals for boys (230), girls (170), and overall students (400). Here are the relative frequencies provided from the answer:
Relative Frequencies for Boys:
- CA: 0.3652173913043478
- TX: 0.16521739130434782
- NY: 0.2782608695652174
- FL: 0.19130434782608696
- Total: 0.575
Relative Frequencies for Girls:
- CA: 0.29411764705882354
- TX: 0.25882352941176473
- NY: 0.15294117647058825
- FL: 0.29411764705882354
- Total: 0.425
Relative Frequencies for Total:
- CA: 0.335
- TX: 0.205
- NY: 0.225
- FL: 0.235
- Total: 1.0
Now, we can put these values back into the two-way table format:
\begin{tabular}{|c|c|c|c|c|c|}
\cline { 2 - 6 } \multicolumn{1}{c|}{} & CA & TX & NY & FL & Total \\
\hline Boys & 0.365 & 0.165 & 0.278 & 0.191 & 0.575 \\
\hline Girls & 0.294 & 0.259 & 0.153 & 0.294 & 0.425 \\
\hline Total & 0.335 & 0.205 & 0.225 & 0.235 & 1.000 \\
\hline
\end{tabular}
Upon evaluating the multiple-choice options, it is clear that none of these options match the calculated relative frequency table. The correct calculations are as tabulated above, and option A does not represent the correct relative frequencies.
Thus, none of the given options (including A) accurately represents the relative frequency for the whole table in this situation.