A cone has a radius of 5 cm and a slant height of 10 cm.

The area of the base of the cone is [tex]$\square$[/tex] [tex]$\pi \text{ cm}^2$[/tex]

The lateral area of the cone is [tex]$\square$[/tex] [tex]$\pi \text{ cm}^2$[/tex]

The surface area of the cone is [tex]$\square$[/tex] [tex]$\pi \text{ cm}^2$[/tex]



Answer :

To determine the areas of a cone given the radius and slant height, you can follow a structured step-by-step approach:

1. Area of the Base:

The base of the cone is a circle. The formula to find the area of a circle is:
[tex]\[ \text{Area}_{\text{base}} = \pi \times r^2 \][/tex]
Where [tex]\( r \)[/tex] is the radius of the base.

Substituting the given radius [tex]\( r = 5 \)[/tex] cm:
[tex]\[ \text{Area}_{\text{base}} = \pi \times (5)^2 = 25\pi \text{ cm}^2 \][/tex]

2. Lateral Area:

The lateral area of a cone can be found using the formula:
[tex]\[ \text{Lateral Area} = \pi \times r \times l \][/tex]
Where [tex]\( l \)[/tex] is the slant height of the cone.

Substituting the given radius [tex]\( r = 5 \)[/tex] cm and slant height [tex]\( l = 10 \)[/tex] cm:
[tex]\[ \text{Lateral Area} = \pi \times 5 \times 10 = 50\pi \text{ cm}^2 \][/tex]

3. Surface Area:

The total surface area of the cone is the sum of the base area and the lateral area. The formula is:
[tex]\[ \text{Surface Area} = \text{Area}_{\text{base}} + \text{Lateral Area} \][/tex]

Substituting in the previously calculated values:
[tex]\[ \text{Surface Area} = 25\pi \text{ cm}^2 + 50\pi \text{ cm}^2 = 75\pi \text{ cm}^2 \][/tex]

So, the detailed solutions are:

- The area of the base of the cone is [tex]\( \boxed{25\pi \text{ cm}^2} \)[/tex].
- The lateral area of the cone is [tex]\( \boxed{50\pi \text{ cm}^2} \)[/tex].
- The surface area of the cone is [tex]\( \boxed{75\pi \text{ cm}^2} \)[/tex].