Solve for [tex]\( k \)[/tex]:

[tex]\[ k + 6 \ \textgreater \ -37 \][/tex]

A. [tex]\( k \ \textgreater \ -43 \)[/tex]

B. [tex]\( k \ \textgreater \ 43 \)[/tex]

C. [tex]\( k \ \textless \ 43 \)[/tex]

D. [tex]\( k \ \textless \ -43 \)[/tex]



Answer :

Certainly! Let's solve the inequality step-by-step:

Given the inequality:
[tex]\[ k + 6 > -37 \][/tex]

Step 1: Isolate the variable [tex]\( k \)[/tex].

To isolate [tex]\( k \)[/tex], we need to get rid of the constant term on the left-hand side of the inequality. We can do this by subtracting 6 from both sides of the inequality.

Subtract 6 from both sides:
[tex]\[ k + 6 - 6 > -37 - 6 \][/tex]

This simplifies to:
[tex]\[ k > -43 \][/tex]

Step 2: Interpret the result.

The simplified inequality tells us that [tex]\( k \)[/tex] must be greater than [tex]\(-43\)[/tex].

Conclusion:

The correct answer is:
[tex]\[ \boxed{A) \, k > -43} \][/tex]