Question 2 (Multiple Choice Worth 2 points)

Rearrange the equation [tex]t - 9 = s + 8y[/tex] to solve for [tex]y[/tex].

A. [tex]y = \frac{t - 9}{8} - s[/tex]
B. [tex]y = \frac{t - 9 - s}{8}[/tex]
C. [tex]y = t - 17 - s[/tex]
D. [tex]y = t - 1 + s[/tex]



Answer :

To solve for [tex]\( y \)[/tex] in the equation [tex]\( t - 9 = s + 8y \)[/tex], follow these steps:

1. Start with the given equation:
[tex]\[ t - 9 = s + 8y \][/tex]

2. Isolate the term containing [tex]\( y \)[/tex] on one side of the equation. Subtract [tex]\( s \)[/tex] from both sides:
[tex]\[ t - 9 - s = 8y \][/tex]

3. Now, to solve for [tex]\( y \)[/tex], divide both sides by 8:
[tex]\[ y = \frac{t - 9 - s}{8} \][/tex]

Thus, the correct rearranged equation to solve for [tex]\( y \)[/tex] is:
[tex]\[ y = \frac{t - 9 - s}{8} \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{y = \frac{t-9-s}{8}} \][/tex]

From the provided multiple-choice options, the correct choice is:
[tex]\[ \boxed{2} \][/tex]