Draw a line from each fraction to its equivalent decimal.

A. [tex]\(\frac{0}{6}\)[/tex] - 0
B. [tex]\(\frac{1}{6}\)[/tex] - [tex]\(0.1 \overline{6}\)[/tex]
C. [tex]\(\frac{16}{10}\)[/tex] - 1.6
D. [tex]\(\frac{4}{25}\)[/tex] - 0.16



Answer :

Sure, let's go through each of these fractions and match them with their correct decimal equivalents.

1. Fraction A: [tex]\(\frac{0}{6}\)[/tex]
- This fraction represents 0 divided by 6. Since anything divided by a nonzero number is 0, the decimal equivalent is:
[tex]\[ \frac{0}{6} = 0.0 \][/tex]
- So, [tex]\( 0.0 \)[/tex] is the correct match for [tex]\(\frac{0}{6}\)[/tex].

2. Fraction B: [tex]\(\frac{1}{6}\)[/tex]
- To convert [tex]\(\frac{1}{6}\)[/tex] to a decimal, we perform the division [tex]\(1 \div 6\)[/tex]. This yields a repeating decimal:
[tex]\[ \frac{1}{6} \approx 0.16666666666666666 \][/tex]
- This can be written as [tex]\(0.1 \overline{6}\)[/tex], where the 6 repeats indefinitely.
- So, [tex]\( 0.1 \overline{6} \)[/tex] is the correct match for [tex]\(\frac{1}{6}\)[/tex].

3. Fraction C: [tex]\(\frac{16}{10}\)[/tex]
- To convert [tex]\(\frac{16}{10}\)[/tex] to a decimal, we perform the division [tex]\(16 \div 10\)[/tex]. This yields:
[tex]\[ \frac{16}{10} = 1.6 \][/tex]
- So, [tex]\( 1.6 \)[/tex] is the correct match for [tex]\(\frac{16}{10}\)[/tex].

4. Fraction D: [tex]\(\frac{4}{25}\)[/tex]
- To convert [tex]\(\frac{4}{25}\)[/tex] to a decimal, we perform the division [tex]\(4 \div 25\)[/tex]. This yields:
[tex]\[ \frac{4}{25} = 0.16 \][/tex]
- So, [tex]\( 0.16 \)[/tex] is the correct match for [tex]\(\frac{4}{25}\)[/tex].

Therefore, the correct matching of fractions to their equivalent decimals is:

- [tex]\(\frac{0}{6}\)[/tex] → [tex]\(0.0\)[/tex]
- [tex]\(\frac{1}{6}\)[/tex] → [tex]\(0.1 \overline{6}\)[/tex]
- [tex]\(\frac{16}{10}\)[/tex] → [tex]\(1.6\)[/tex]
- [tex]\(\frac{4}{25}\)[/tex] → [tex]\(0.16\)[/tex]