Does the expression [tex]\frac{x^3-1}{x^2-1}[/tex] simplify to [tex]x[/tex]?

A. No, because [tex]x^3-1[/tex] can be factored as [tex]x(x^2+x+1)[/tex] and [tex]x^2-1[/tex] can be factored as [tex](x+1)(x-1)[/tex], so only [tex]x[/tex] can be canceled.
B. Yes, because [tex]x^3-1[/tex] can be factored as [tex](x-1)(x^2+x+1)[/tex] and [tex]x^2-1[/tex] can be factored as [tex](x-1)(x+1)[/tex], so [tex](x-1)[/tex] can be canceled.
C. No, because the -1 in the numerator and denominator is not a common factor and cannot be canceled.
D. Yes, because -1 in the numerator and denominator is a common factor and can be canceled.



Answer :

Let's break down the given expression step-by-step to determine if [tex]\(\frac{x^3 - 1}{x^2 - 1}\)[/tex] simplifies to [tex]\(x\)[/tex].

### Step 1: Factor the Numerator

The numerator is [tex]\(x^3 - 1\)[/tex]. This can be factored using the difference of cubes formula:

[tex]\[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \][/tex]

Here, [tex]\(a = x\)[/tex] and [tex]\(b = 1\)[/tex]:

[tex]\[ x^3 - 1 = (x - 1)(x^2 + x + 1) \][/tex]

So, the factored form of the numerator is:

[tex]\[ x^3 - 1 = (x - 1)(x^2 + x + 1) \][/tex]

### Step 2: Factor the Denominator

The denominator is [tex]\(x^2 - 1\)[/tex]. This can be factored using the difference of squares formula:

[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]

Here, [tex]\(a = x\)[/tex] and [tex]\(b = 1\)[/tex]:

[tex]\[ x^2 - 1 = (x - 1)(x + 1) \][/tex]

So, the factored form of the denominator is:

[tex]\[ x^2 - 1 = (x - 1)(x + 1) \][/tex]

### Step 3: Simplify the Fraction

Now that we have factored both the numerator and the denominator, we can write the original expression as:

[tex]\[ \frac{x^3 - 1}{x^2 - 1} = \frac{(x - 1)(x^2 + x + 1)}{(x - 1)(x + 1)} \][/tex]

We can cancel the common factor of [tex]\((x - 1)\)[/tex] in the numerator and the denominator:

[tex]\[ \frac{(x - 1)(x^2 + x + 1)}{(x - 1)(x + 1)} = \frac{x^2 + x + 1}{x + 1} \][/tex]

### Step 4: Compare the Simplified Expression to [tex]\(x\)[/tex]

After canceling the common factor, the simplified expression is:

[tex]\[ \frac{x^2 + x + 1}{x + 1} \][/tex]

It is evident that [tex]\(\frac{x^2 + x + 1}{x + 1}\)[/tex] is not simply [tex]\(x\)[/tex]. Therefore, the expression [tex]\(\frac{x^3 - 1}{x^2 - 1}\)[/tex] does not simplify to [tex]\(x\)[/tex].

### Conclusion

Thus, the correct answer is:
No, the expression [tex]\(\frac{x^3 - 1}{x^2 - 1}\)[/tex] does not simplify to [tex]\(x\)[/tex].