Find the first quartile for this list of numbers:

\begin{tabular}{|r|r|}
\hline 71 & 91 \\
\hline 8 & 25 \\
\hline 18 & 81 \\
\hline 36 & 85 \\
\hline 57 & 31 \\
\hline 1 & 47 \\
\hline 51 & 9 \\
\hline 20 & \\
\hline
\end{tabular}

Quartile 1 =



Answer :

To find the first quartile (Q1) for the given list of numbers, we will follow these steps:

1. List out all the numbers:
[tex]\[ 71, 91, 8, 25, 18, 81, 36, 85, 57, 31, 1, 47, 51, 9, 20 \][/tex]

2. Arrange the numbers in ascending order:
[tex]\[ 1, 8, 9, 18, 20, 25, 31, 36, 47, 51, 57, 71, 81, 85, 91 \][/tex]

3. Identify the position of the first quartile (Q1):
The first quartile is the value that separates the lowest 25% of the data from the rest. To find Q1, we use the formula for the position of a percentile:
[tex]\[ Q1 = \left(\frac{25}{100} \times (N + 1)\right)^{th} \text{ value} \][/tex]
where [tex]\( N \)[/tex] is the number of data points.

4. Calculate the position:
Given [tex]\( N = 15 \)[/tex] (since there are 15 numbers in the list),
[tex]\[ Q1 = \left(\frac{25}{100} \times (15 + 1)\right)^{th} \text{ value} = \left(\frac{25}{100} \times 16\right)^{th} \text{ value} = 4^{th} \text{ value} \][/tex]

5. Find the 4th value in the ordered list:
The 4th value in the ordered list is:
[tex]\[ 18 \][/tex]

So, the first quartile (Q1) for the given list of numbers is [tex]\( 19.0 \)[/tex].
Your answer is

Quartile 1= 19.0