Write each of the following rational numbers with a positive denominator.

(i) [tex]\frac{3}{-5}[/tex]

(ii) [tex]\frac{8}{-17}[/tex]

(iii) [tex]\frac{-21}{-25}[/tex]

(iv) [tex]\frac{-40}{-59}[/tex]



Answer :

Sure, let's convert each of the given rational numbers so that they have positive denominators.

### (i) [tex]\(\frac{3}{-5}\)[/tex]
1. Given the fraction [tex]\(\frac{3}{-5}\)[/tex], the denominator is negative.
2. To make the denominator positive, change the sign of both the numerator and the denominator:
[tex]\[ \frac{3}{-5} = -\frac{3}{5} \][/tex]
3. Calculate the value:
[tex]\[ -\frac{3}{5} = -0.6 \][/tex]
But we want it to be positive, so:
[tex]\[ \frac{-3}{5} = 0.6 \][/tex]

### (ii) [tex]\(\frac{8}{-17}\)[/tex]
1. Given the fraction [tex]\(\frac{8}{-17}\)[/tex], the denominator is negative.
2. To make the denominator positive, change the sign of both the numerator and the denominator:
[tex]\[ \frac{8}{-17} = -\frac{8}{17} \][/tex]
3. Calculate the value:
[tex]\[ -\frac{8}{17} \approx -0.47058823529411764 \][/tex]
But we want it to be positive, so:
[tex]\[ \frac{-8}{17} \approx 0.47058823529411764 \][/tex]

### (iii) [tex]\(\frac{-21}{-25}\)[/tex]
1. Given the fraction [tex]\(\frac{-21}{-25}\)[/tex], both the numerator and the denominator are negative.
2. When both numerator and denominator are negative, the fraction itself is positive:
[tex]\[ \frac{-21}{-25} = \frac{21}{25} \][/tex]
3. Calculate the value:
[tex]\[ \frac{21}{25} = 0.84 \][/tex]

### (iv) [tex]\(\frac{-40}{-59}\)[/tex]
1. Given the fraction [tex]\(\frac{-40}{-59}\)[/tex], both the numerator and the denominator are negative.
2. When both numerator and denominator are negative, the fraction itself is positive:
[tex]\[ \frac{-40}{-59} = \frac{40}{59} \][/tex]
3. Calculate the value:
[tex]\[ \frac{40}{59} \approx 0.6779661016949152 \][/tex]

Summarizing, the fractions with positive denominators are:
[tex]\[ (i) \quad 0.6 \\ (ii) \quad 0.47058823529411764 \\ (iii) \quad 0.84 \\ (iv) \quad 0.6779661016949152 \][/tex]