Sure, I'll help you solve for [tex]\( x \)[/tex] step-by-step.
We start with the given equation:
[tex]\[ 8x + 24 = x - 6 \][/tex]
Step 1: Move all terms involving [tex]\( x \)[/tex] to one side of the equation and constant terms to the other side.
First, subtract [tex]\( x \)[/tex] from both sides:
[tex]\[ 8x + 24 - x = x - 6 - x \][/tex]
[tex]\[ 7x + 24 = -6 \][/tex]
Step 2: Subtract 24 from both sides to isolate the term involving [tex]\( x \)[/tex]:
[tex]\[ 7x + 24 - 24 = -6 - 24 \][/tex]
[tex]\[ 7x = -30 \][/tex]
Step 3: Divide by 7 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{-30}{7} \][/tex]
So the solution to the equation is:
[tex]\[ x = \frac{-30}{7} \][/tex]
Therefore, [tex]\( x \)[/tex] is:
[tex]\[ x = -\frac{30}{7} \][/tex]