Solve and check the equation:
[tex]\[ 7x - 6(x + 5) = 2x - 3 \][/tex]

Select the correct choice below and, if necessary, fill in the answer box to complete your choice:

A. The solution set is [tex]\(\{\square\}\)[/tex]. (Type an integer or a simplified fraction.)

B. The solution set is [tex]\(\{x \mid x \text{ is a real number}\}\)[/tex].

C. The solution set is [tex]\(\varnothing\)[/tex].



Answer :

Sure, let's solve the equation step-by-step:

Given equation:
[tex]\[ 7x - 6(x + 5) = 2x - 3 \][/tex]

Step 1: Distribute the [tex]\(-6\)[/tex] across [tex]\((x + 5)\)[/tex]:
[tex]\[ 7x - 6x - 30 = 2x - 3 \][/tex]

Step 2: Combine like terms on the left side:
[tex]\[ x - 30 = 2x - 3 \][/tex]

Step 3: Isolate the variable term by subtracting [tex]\(2x\)[/tex] from both sides of the equation:
[tex]\[ x - 2x - 30 = -3 \][/tex]
[tex]\[ -x - 30 = -3 \][/tex]

Step 4: Solve for [tex]\(x\)[/tex] by adding 30 to both sides:
[tex]\[ -x = -3 + 30 \][/tex]
[tex]\[ -x = 27 \][/tex]

Step 5: Multiply both sides by [tex]\(-1\)[/tex] to find [tex]\(x\)[/tex]:
[tex]\[ x = -27 \][/tex]

Therefore, the solution set is [tex]\(\{-27\}\)[/tex].

Verification:

Substitute [tex]\( x = -27 \)[/tex] back into the original equation to verify:

Left side:
[tex]\[ 7(-27) - 6(-27 + 5) \][/tex]
[tex]\[ = -189 - 6(-22) \][/tex]
[tex]\[ = -189 + 132 \][/tex]
[tex]\[ = -57 \][/tex]

Right side:
[tex]\[ 2(-27) - 3 \][/tex]
[tex]\[ = -54 - 3 \][/tex]
[tex]\[ = -57 \][/tex]

Both sides match, confirming that:

[tex]\[ x = -27 \][/tex]

The correct choice is:

A. The solution set is [tex]\(\{-27\}\)[/tex].