Answer :

To determine the area of a sector of a circle, we need to use the formula for the area of a sector, which is given by:

[tex]\[ A = \frac{1}{2} r^2 \theta \][/tex]

where:
- [tex]\( r \)[/tex] is the radius of the circle,
- [tex]\( \theta \)[/tex] is the central angle of the sector in radians,
- [tex]\( A \)[/tex] is the area of the sector.

Given the parameters from the problem:
- The radius [tex]\( r = \frac{1}{2} \)[/tex],
- The central angle [tex]\( \theta = \frac{7 \pi}{6} \)[/tex].

Now let's substitute these values into the formula to find the area of the sector.

First, we calculate [tex]\( r^2 \)[/tex]:

[tex]\[ r^2 = \left( \frac{1}{2} \right)^2 = \frac{1}{4} \][/tex]

Next, we substitute the given values into the area formula:

[tex]\[ A = \frac{1}{2} \times \frac{1}{4} \times \frac{7 \pi}{6} \][/tex]

Now we perform the multiplication:

[tex]\[ A = \frac{1}{2} \times \frac{1}{4} \times \frac{7 \pi}{6} = \frac{1}{8} \times \frac{7 \pi}{6} = \frac{7 \pi}{48} \][/tex]

To get the numeric value of the area, we evaluate [tex]\( \frac{7 \pi}{48} \)[/tex]:

Using [tex]\( \pi \approx 3.141592653589793 \)[/tex], we have:

[tex]\[ A \approx \frac{7 \times 3.141592653589793}{48} \approx \frac{21.991148575128544}{48} \approx 0.4581489286485115 \][/tex]

Therefore, the area of the sector is approximately:

[tex]\[ 0.4581489286485115 \][/tex]