Part B

Natalie also made a catapult, but she used stronger elastic bands than Aiden did. As a result, she was able to send her ball farther with a shorter arm length. She also varied the length of her catapult arm while measuring the horizontal distance between where the tennis ball was launched and where it landed. The table presents the data she recorded while using her catapult.

\begin{tabular}{|c|c|}
\hline Length of Catapult Arm [tex]$(cm)$[/tex] & Horizontal Distance [tex]$(cm)$[/tex] \\
\hline 25 & 290.8 \\
\hline 35 & 325.4 \\
\hline 30 & 315.2 \\
\hline 60 & 420 \\
\hline 65 & 435.8 \\
\hline 50 & 385.1 \\
\hline 45 & 355 \\
\hline 40 & 362 \\
\hline 50 & 378.3 \\
\hline 40 & 333.9 \\
\hline
\end{tabular}

Use the graphing tool to determine the line of best fit for Natalie's data.

Question

What is the equation of the line of best fit for Natalie's data?

Enter the correct answer in the box by replacing [tex]$m$[/tex] and [tex]$b$[/tex] in the equation. Round each number to the nearest tenth.

[tex]\[ y = mx + b \][/tex]



Answer :

To determine the line of best fit, also known as the linear regression equation, for Natalie's data, we need to follow these steps:

1. Collect the Data Points:
We have the following pairs of data (Length of Catapult Arm in cm, Horizontal Distance in cm):

[tex]\[ \begin{align*} (25, 290.8), \\ (35, 325.4), \\ (30, 315.2), \\ (60, 420), \\ (65, 435.8), \\ (50, 385.1), \\ (45, 355), \\ (40, 362), \\ (50, 378.3), \\ (40, 333.9). \end{align*} \][/tex]

2. Calculate the Means:
- Mean of lengths [tex]\(\bar{x}\)[/tex]:

[tex]\[ \bar{x} = \frac{1}{10}(25 + 35 + 30 + 60 + 65 + 50 + 45 + 40 + 50 + 40) = \frac{440}{10} = 44 \][/tex]

- Mean of distances [tex]\(\bar{y}\)[/tex]:

[tex]\[ \bar{y} = \frac{1}{10}(290.8 + 325.4 + 315.2 + 420 + 435.8 + 385.1 + 355 + 362 + 378.3 + 333.9) = \frac{3601.5}{10} = 360.15 \][/tex]

3. Calculate the Slopes and Intercepts:
We calculate the slope [tex]\(m\)[/tex] using the formula:

[tex]\[ m = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \][/tex]

The numerator can be calculated as:

[tex]\[ \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = (25-44)(290.8-360.15) + (35-44)(325.4-360.15) + \ldots + (40-44)(333.9-360.15) \][/tex]

The denominator can be calculated as:

[tex]\[ \sum_{i=1}^{n} (x_i - \bar{x})^2 = (25-44)^2 + (35-44)^2 + \ldots + (40-44)^2 \][/tex]

Plugging values:

[tex]\[ \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = (25-44)(290.8-360.15) + (35-44)(325.4-360.15) + \ldots + (40-44)(333.9-360.15) \][/tex]

After performing the calculations:

[tex]\[ m \approx 2.7 \][/tex]

Then, to find [tex]\( b \)[/tex], the y-intercept formula is:

[tex]\[ b = \bar{y} - m\bar{x} \][/tex]

[tex]\[ b = 360.15 - (2.7 \times 44) = 360.15 - 118.8 \approx 241.35 \][/tex]

Thus, the equation of the line of best fit is:

[tex]\[ y = 2.7x + 241.4 \][/tex]