Answer :
Of course! Let's solve the equation step by step:
The given equation is:
[tex]\[ \frac{x}{3} + \frac{5}{2} = \frac{-3}{2} \][/tex]
Step 1: Isolate the term with [tex]\( x \)[/tex].
Subtract [tex]\(\frac{5}{2}\)[/tex] from both sides of the equation:
[tex]\[ \frac{x}{3} = \frac{-3}{2} - \frac{5}{2} \][/tex]
Step 2: Combine the fractions on the right-hand side.
[tex]\[ \frac{x}{3} = \frac{-3 - 5}{2} = \frac{-8}{2} = -4 \][/tex]
So, we now have:
[tex]\[ \frac{x}{3} = -4 \][/tex]
Step 3: Solve for [tex]\( x \)[/tex].
Multiply both sides by 3 to get rid of the fraction:
[tex]\[ x = -4 \times 3 = -12 \][/tex]
Thus, the solution to the equation is:
[tex]\[ x = -12 \][/tex]
So, the correct answer is:
(b) -12
The given equation is:
[tex]\[ \frac{x}{3} + \frac{5}{2} = \frac{-3}{2} \][/tex]
Step 1: Isolate the term with [tex]\( x \)[/tex].
Subtract [tex]\(\frac{5}{2}\)[/tex] from both sides of the equation:
[tex]\[ \frac{x}{3} = \frac{-3}{2} - \frac{5}{2} \][/tex]
Step 2: Combine the fractions on the right-hand side.
[tex]\[ \frac{x}{3} = \frac{-3 - 5}{2} = \frac{-8}{2} = -4 \][/tex]
So, we now have:
[tex]\[ \frac{x}{3} = -4 \][/tex]
Step 3: Solve for [tex]\( x \)[/tex].
Multiply both sides by 3 to get rid of the fraction:
[tex]\[ x = -4 \times 3 = -12 \][/tex]
Thus, the solution to the equation is:
[tex]\[ x = -12 \][/tex]
So, the correct answer is:
(b) -12