Emyr sat his GCSE Maths exam. He scored a total of 112 marks out of the 200 possible.

The table shows the grade obtained based on the percentage scored in the exam.

a) Work out Emyr's percentage score.

[tex]\[
\text{Percentage Score} = \left( \frac{112}{200} \right) \times 100
\][/tex]

\begin{tabular}{|c|c|}
\hline
Percentage & Result \\
\hline
[tex]$15 \%-29 \%$[/tex] & D \\
\hline
[tex]$30 \%-49 \%$[/tex] & C \\
\hline
[tex]$50 \%-64 \%$[/tex] & B \\
\hline
[tex]$65 \%-79 \%$[/tex] & A \\
\hline
[tex]$80 \%-100 \%$[/tex] & A [tex]$^*$[/tex] \\
\hline
\end{tabular}

b) What is Emyr's result?



Answer :

To provide a complete solution to the problem:

### a) Calculate Emyr's Percentage Score

To determine Emyr's percentage score in the exam, we use the formula for percentage:

[tex]\[ \text{Percentage score} = \left( \frac{\text{Exam score}}{\text{Total possible score}} \right) \times 100 \][/tex]

Given:
- Exam score = 112
- Total possible score = 200

Substitute these values into the formula:

[tex]\[ \text{Percentage score} = \left( \frac{112}{200} \right) \times 100 \][/tex]

First, perform the division within the parentheses:

[tex]\[ \frac{112}{200} = 0.56 \][/tex]

Now, multiply by 100 to convert the decimal to a percentage:

[tex]\[ 0.56 \times 100 = 56\% \][/tex]

So, Emyr's percentage score is 56%.

### b) Determine Emyr's Result

To find Emyr's result based on his percentage score, we refer to the given grading table:

[tex]\[ \begin{tabular}{|c|c|} \hline Percentage & Result \\ \hline $15 \%-29 \%$ & D \\ \hline $30 \%-49 \%$ & C \\ \hline $50 \%-64 \%$ & B \\ \hline $65 \%-79 \%$ & A \\ \hline $80 \%-100 \%$ & A$^*$ \\ \hline \end{tabular} \][/tex]

We observe that a percentage score of 56% falls in the range of 50% to 64%, which corresponds to the grade "B".

Therefore, Emyr's result is:

[tex]\[ \boxed{B} \][/tex]