If [tex]\frac{1}{5} h + 25 = d[/tex], which of the following expressions is equivalent to [tex]h[/tex]?

Choose one answer:

A. [tex]\frac{1}{5} d - 5[/tex]
B. [tex]\frac{1}{5} d + 25[/tex]
C. [tex]5 d - 125[/tex]
D. [tex]5 d - 25[/tex]



Answer :

To determine which expression is equivalent to [tex]\( h \)[/tex], we start with the given equation:

[tex]\[ \frac{1}{5} h + 25 = d \][/tex]

Our goal is to solve this equation for [tex]\( h \)[/tex].

Step 1: Isolate [tex]\( h \)[/tex] on one side of the equation.

First, subtract 25 from both sides to get:

[tex]\[ \frac{1}{5} h = d - 25 \][/tex]

Step 2: Eliminate the fraction by multiplying both sides of the equation by 5:

[tex]\[ h = 5(d - 25) \][/tex]

Expanding the expression, we get:

[tex]\[ h = 5d - 125 \][/tex]

So, [tex]\( h \)[/tex] is equivalent to [tex]\( 5d - 125 \)[/tex].

Step 3: Compare this expression to the choices given:

- [tex]\( \frac{1}{5} d - 5 \)[/tex]
- [tex]\( \frac{1}{5} d + 25 \)[/tex]
- [tex]\( 5d - 125 \)[/tex]
- [tex]\( 5d - 25 \)[/tex]

The expression [tex]\( 5d - 125 \)[/tex] matches choice (C).

Therefore, the correct answer is:

[tex]\[\boxed{5d - 125}\][/tex]

This matches choice (C). Thus, the expression equivalent to [tex]\( h \)[/tex] is: [tex]\( 5d - 125 \)[/tex].