Complete the table based on the equation [tex]$y=2 x^2+1$[/tex].

[tex]\[
\begin{tabular}{|l|l|l|l|l|l|}
\hline
$x$ & -6 & -5 & 0 & 5 & 6 \\
\hline
$y$ & & & & & \\
\hline
\end{tabular}
\][/tex]



Answer :

Sure, let's calculate the value of [tex]\( y \)[/tex] for each given value of [tex]\( x \)[/tex] using the equation [tex]\( y = 2x^2 + 1 \)[/tex].

Given the equation:
[tex]\[ y = 2x^2 + 1 \][/tex]

We'll substitute each [tex]\( x \)[/tex] value into the equation to find the corresponding [tex]\( y \)[/tex] value.

1. For [tex]\( x = -6 \)[/tex]:
[tex]\[ y = 2(-6)^2 + 1 \][/tex]
[tex]\[ y = 2(36) + 1 \][/tex]
[tex]\[ y = 72 + 1 \][/tex]
[tex]\[ y = 73 \][/tex]

2. For [tex]\( x = -5 \)[/tex]:
[tex]\[ y = 2(-5)^2 + 1 \][/tex]
[tex]\[ y = 2(25) + 1 \][/tex]
[tex]\[ y = 50 + 1 \][/tex]
[tex]\[ y = 51 \][/tex]

3. For [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 2(0)^2 + 1 \][/tex]
[tex]\[ y = 0 + 1 \][/tex]
[tex]\[ y = 1 \][/tex]

4. For [tex]\( x = 5 \)[/tex]:
[tex]\[ y = 2(5)^2 + 1 \][/tex]
[tex]\[ y = 2(25) + 1 \][/tex]
[tex]\[ y = 50 + 1 \][/tex]
[tex]\[ y = 51 \][/tex]

5. For [tex]\( x = 6 \)[/tex]:
[tex]\[ y = 2(6)^2 + 1 \][/tex]
[tex]\[ y = 2(36) + 1 \][/tex]
[tex]\[ y = 72 + 1 \][/tex]
[tex]\[ y = 73 \][/tex]

Now, we can fill in the values in the table:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & -6 & -5 & 0 & 5 & 6 \\ \hline y & 73 & 51 & 1 & 51 & 73 \\ \hline \end{array} \][/tex]

So the completed table is:
[tex]\[ \begin{tabular}{|c|c|c|c|c|c|} \hline x & -6 & -5 & 0 & 5 & 6 \\ \hline y & 73 & 51 & 1 & 51 & 73 \\ \hline \end{tabular} \][/tex]