Ilya split up the area of a rectangle to help him solve the equation [tex]4,348 \div 6=[/tex] ?

He splits the rectangle into parts that are easy to divide by 6 and a remainder.

Complete the equations.

[tex]\[
\begin{array}{l}
a=700 \text { units } \\
b=20 \text { units } \\
c=\square \text { units } \\
h=a+b+c=\quad \square \text { units } \\
4,348 \div 6= \\
\text { remainder } \\
\end{array}
\][/tex]



Answer :

To help Ilya solve the equation [tex]\( 4,348 \div 6 \)[/tex], let's follow his method of splitting the rectangle into parts that are easy to divide by 6 and a remainder.

First, identify the given units:
[tex]\[ a = 700 \text{ units } \][/tex]
[tex]\[ b = 20 \text{ units } \][/tex]

Next, we need to determine the value of [tex]\( c \)[/tex] such that the total [tex]\( a + b + c \)[/tex] equals the target result of the division. We first calculate the initial sum of [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:

[tex]\[ a + b = 700 + 20 = 720 \][/tex]

We know the result of [tex]\( 4,348 \div 6 \)[/tex] divided into these parts will be:

[tex]\[ \frac{4,348}{6} = 724.6666666666666 \][/tex]

The initial allocated sum [tex]\( a + b \)[/tex] is 720 units. So, to find [tex]\( c \)[/tex]:

[tex]\[ c = 724.6666666666666 - 720 = 4.666666666666629 \][/tex]

Hence, we've found:

[tex]\[ c = 4.666666666666629 \text{ units } \][/tex]

Next, we calculate the total sum [tex]\( h \)[/tex]:

[tex]\[ h = a + b + c = 700 + 20 + 4.666666666666629 = 724.6666666666666 \][/tex]

Then, the result of [tex]\( 4,348 \div 6 \)[/tex] is:

[tex]\[ \frac{4,348}{6} = 724 \text{ (quotient)},\, \text{ remainder } = 4 \][/tex]

Let's fill in the equations completely:

[tex]\[ a = 700 \text{ units } \][/tex]
[tex]\[ b = 20 \text{ units } \][/tex]
[tex]\[ c = 4.666666666666629 \text{ units } \][/tex]
[tex]\[ h = a + b + c = 724.6666666666666 \text{ units } \][/tex]
[tex]\[ 4,348 \div 6 = 724.6666666666666 \][/tex]
[tex]\[ \text{ remainder } = 4 \][/tex]

This step-by-step process demonstrates how Ilya split the area and arrived at the division result and the remainder.