If [tex]$P=(-2,-1)$[/tex] and [tex]$Q=(2,1)$[/tex] are the endpoints of the diameter of a circle, find the equation of the circle.

[tex](x-0)^2+(y-[?])^2=[][/tex]

First, find the center of the circle, which is the midpoint of [tex]P[/tex] and [tex]Q[/tex].

Midpoint: [tex]\left(\frac{-2+2}{2}, \frac{-1+1}{2}\right) = (0, 0)[/tex]

Next, calculate the radius, which is half the distance between [tex]P[/tex] and [tex]Q[/tex].

Distance formula: [tex]\sqrt{(2-(-2))^2 + (1-(-1))^2} = \sqrt{4^2 + 2^2} = \sqrt{16 + 4} = \sqrt{20} = 2\sqrt{5}[/tex]

Radius: [tex]\sqrt{5}[/tex]

Equation of the circle: [tex](x-0)^2 + (y-0)^2 = (\sqrt{5})^2 = 5[/tex]

So, the equation of the circle is:

[tex](x-0)^2 + (y-0)^2 = 5[/tex]

or simply

[tex]x^2 + y^2 = 5[/tex]



Answer :

To find the equation of the circle given that [tex]\(P = (-2, -1)\)[/tex] and [tex]\(Q = (2, 1)\)[/tex] are the endpoints of its diameter, follow these detailed steps:

1. Find the center of the circle: The center of the circle is the midpoint of the diameter.

Midpoint formula is:
[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

Plugging in the coordinates of [tex]\(P\)[/tex] and [tex]\(Q\)[/tex]:
[tex]\[ \text{Center} = \left( \frac{-2 + 2}{2}, \frac{-1 + 1}{2} \right) = (0, 0) \][/tex]

2. Calculate the radius of the circle: The radius is half the length of the diameter. First, find the distance between [tex]\(P\)[/tex] and [tex]\(Q\)[/tex], which represents the length of the diameter.

Use the distance formula:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

Substituting the given coordinates:
[tex]\[ \text{Distance} = \sqrt{(2 - (-2))^2 + (1 - (-1))^2} = \sqrt{(2 + 2)^2 + (1 + 1)^2} = \sqrt{4^2 + 2^2} = \sqrt{16 + 4} = \sqrt{20} = 2\sqrt{5} \][/tex]

Therefore, the radius [tex]\(r\)[/tex] is:
[tex]\[ r = \frac{2\sqrt{5}}{2} = \sqrt{5} \][/tex]

3. Form the equation of the circle: The standard form of the equation of a circle with center [tex]\((h, k)\)[/tex] and radius [tex]\(r\)[/tex] is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]

Substituting [tex]\(h = 0\)[/tex], [tex]\(k = 0\)[/tex], and [tex]\(r = \sqrt{5}\)[/tex]:
[tex]\[ (x - 0)^2 + (y - 0)^2 = (\sqrt{5})^2 \][/tex]

4. Simplify the equation:
[tex]\[ x^2 + y^2 = 5 \][/tex]

The equation of the circle is:
[tex]\[ (x - 0)^2 + (y - 0)^2 = 5 \][/tex]