Answer :
To determine the weighted mean of the RORs (Rate of Returns) for each portfolio, we follow these steps:
1. Calculate the total investment in each portfolio.
2. Determine the weighted ROR for each portfolio.
3. Compare the weighted RORs and rank the portfolios from best to worst performance.
Step 1: Calculate the Total Investment for Each Portfolio
Portfolio 1:
[tex]\[ 850 + 2425 + 280 + 1400 + 2330 = 7285 \][/tex]
Portfolio 2:
[tex]\[ 1050 + 1950 + 1295 + 745 + 1050 = 7090 \][/tex]
Portfolio 3:
[tex]\[ 1175 + 550 + 860 + 550 + 2000 = 5135 \][/tex]
Step 2: Calculate the Weighted ROR for Each Portfolio
The weighted ROR is calculated using the formula:
[tex]\[ \text{Weighted ROR} = \sum \left(\frac{\text{Investment Amount} \times \text{ROR}}{\text{Total Investment}}\right) \][/tex]
Portfolio 1:
[tex]\[ \text{Weighted ROR}_1 = \left(\frac{850 \times -7.2}{7285}\right) + \left(\frac{2425 \times 5.8}{7285}\right) + \left(\frac{280 \times 10.6}{7285}\right) + \left(\frac{1400 \times 3.6}{7285}\right) + \left(\frac{2330 \times 0.9}{7285}\right) = 2.477693891557996 \][/tex]
Portfolio 2:
[tex]\[ \text{Weighted ROR}_2 = \left(\frac{1050 \times -7.2}{7090}\right) + \left(\frac{1950 \times 5.8}{7090}\right) + \left(\frac{1295 \times 10.6}{7090}\right) + \left(\frac{745 \times 3.6}{7090}\right) + \left(\frac{1050 \times 0.9}{7090}\right) = 3.465353037766831 \][/tex]
Portfolio 3:
[tex]\[ \text{Weighted ROR}_3 = \left(\frac{1175 \times -7.2}{5135}\right) + \left(\frac{550 \times 5.8}{5135}\right) + \left(\frac{860 \times 10.6}{5135}\right) + \left(\frac{550 \times 3.6}{5135}\right) + \left(\frac{2000 \times 0.9}{5135}\right) = 1.485102239532619 \][/tex]
Step 3: Rank the Portfolios from Best to Worst Performance
Comparing the weighted RORs:
[tex]\[ \text{Portfolio 2}: 3.465353037766831 \][/tex]
[tex]\[ \text{Portfolio 1}: 2.477693891557996 \][/tex]
[tex]\[ \text{Portfolio 3}: 1.485102239532619 \][/tex]
Order from best to worst performance:
[tex]\[ \text{Portfolio 2, Portfolio 1, Portfolio 3} \][/tex]
Thus, the list showing the comparison of the overall performance of the portfolios from best to worst is:
[tex]\[ \boxed{\text{Portfolio 2, Portfolio 1, Portfolio 3}} \][/tex]
1. Calculate the total investment in each portfolio.
2. Determine the weighted ROR for each portfolio.
3. Compare the weighted RORs and rank the portfolios from best to worst performance.
Step 1: Calculate the Total Investment for Each Portfolio
Portfolio 1:
[tex]\[ 850 + 2425 + 280 + 1400 + 2330 = 7285 \][/tex]
Portfolio 2:
[tex]\[ 1050 + 1950 + 1295 + 745 + 1050 = 7090 \][/tex]
Portfolio 3:
[tex]\[ 1175 + 550 + 860 + 550 + 2000 = 5135 \][/tex]
Step 2: Calculate the Weighted ROR for Each Portfolio
The weighted ROR is calculated using the formula:
[tex]\[ \text{Weighted ROR} = \sum \left(\frac{\text{Investment Amount} \times \text{ROR}}{\text{Total Investment}}\right) \][/tex]
Portfolio 1:
[tex]\[ \text{Weighted ROR}_1 = \left(\frac{850 \times -7.2}{7285}\right) + \left(\frac{2425 \times 5.8}{7285}\right) + \left(\frac{280 \times 10.6}{7285}\right) + \left(\frac{1400 \times 3.6}{7285}\right) + \left(\frac{2330 \times 0.9}{7285}\right) = 2.477693891557996 \][/tex]
Portfolio 2:
[tex]\[ \text{Weighted ROR}_2 = \left(\frac{1050 \times -7.2}{7090}\right) + \left(\frac{1950 \times 5.8}{7090}\right) + \left(\frac{1295 \times 10.6}{7090}\right) + \left(\frac{745 \times 3.6}{7090}\right) + \left(\frac{1050 \times 0.9}{7090}\right) = 3.465353037766831 \][/tex]
Portfolio 3:
[tex]\[ \text{Weighted ROR}_3 = \left(\frac{1175 \times -7.2}{5135}\right) + \left(\frac{550 \times 5.8}{5135}\right) + \left(\frac{860 \times 10.6}{5135}\right) + \left(\frac{550 \times 3.6}{5135}\right) + \left(\frac{2000 \times 0.9}{5135}\right) = 1.485102239532619 \][/tex]
Step 3: Rank the Portfolios from Best to Worst Performance
Comparing the weighted RORs:
[tex]\[ \text{Portfolio 2}: 3.465353037766831 \][/tex]
[tex]\[ \text{Portfolio 1}: 2.477693891557996 \][/tex]
[tex]\[ \text{Portfolio 3}: 1.485102239532619 \][/tex]
Order from best to worst performance:
[tex]\[ \text{Portfolio 2, Portfolio 1, Portfolio 3} \][/tex]
Thus, the list showing the comparison of the overall performance of the portfolios from best to worst is:
[tex]\[ \boxed{\text{Portfolio 2, Portfolio 1, Portfolio 3}} \][/tex]