Drag each tile to the correct box. Arrange the steps in the correct order to solve the equation:

[tex]\[ 3\left(2^{2t-5}\right) - 4 = 10 \][/tex]

1. Add 4 to each side of the equation:
[tex]\[ 3\left(2^{2t-5}\right) = 14 \][/tex]

2. Divide both sides of the equation by 3:
[tex]\[ 2^{2t-5} = \frac{14}{3} \][/tex]

3. Take the log of each side:
[tex]\[ \log\left(2^{2t-5}\right) = \log\left(\frac{14}{3}\right) \][/tex]

4. Use the Exponential Property and write [tex]\(\frac{14}{3}\)[/tex] in decimal form:
[tex]\[ (2t-5) \log 2 = \log 4.67 \][/tex]

5. Divide each side by [tex]\(\log 2\)[/tex]:
[tex]\[ 2t-5 = \frac{\log 4.67}{\log 2} \][/tex]

6. Find the value of [tex]\(\frac{\log 4.67}{\log 2}\)[/tex] and substitute:
[tex]\[ 2t-5 = 2.23 \][/tex]

7. Add 5 to each side of the equation:
[tex]\[ 2t = 2.23 + 5 \][/tex]

8. Simplify:
[tex]\[ t \approx 3.625 \][/tex]



Answer :

To solve the given equation step-by-step, arrange the steps in the following order:

1. Add 4 to each side of the equation:
[tex]\[ 3\left(2^{2 t-5}\right) = 14 \][/tex]

2. Divide both sides of the equation by 3:
[tex]\[ 2^{2 t-5} = \frac{14}{3} \][/tex]

3. Take the log of each side:
[tex]\[ \log \left(2^{2 t-5}\right) = \log \left(\frac{14}{3}\right) \][/tex]

4. Use the Exponential Property and write [tex]\(\frac{14}{3}\)[/tex] in decimal form:
[tex]\[ (2 t-5) \log 2 = \log 4.67 \][/tex]

5. Divide each side by [tex]\(\log 2\)[/tex]:
[tex]\[ 2 t-5 = \frac{\log 4.67}{\log 2} \][/tex]

6. Find the value of [tex]\(\frac{\log 4.67}{\log 2}\)[/tex] and substitute:
[tex]\[ 2 t-5 = 2.23 \][/tex]

7. Add 5 to each side of the equation:
[tex]\[ 2 t = 2.23 + 5 \][/tex]

8. Simplify:
[tex]\[ t \approx 3.625 \][/tex]

So, the final solution is [tex]\( t \approx 3.625 \)[/tex].