Answer :
Let's solve for the missing values in the table step by step.
The given data is:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline \text{CANTIDAD DE RASTOS} & 6 & 4 & 1 & \text{N/A} & 5 & 15 \\ \hline \text{CANTIDAD DE FLORES} & 36 & \text{N/A} & \text{N/A} & 72 & 1 & \text{N/A} \\ \hline \end{array} \][/tex]
We know that for the first entry:
[tex]\[ 6 \text{ rastos} \rightarrow 36 \text{ flores} \][/tex]
From this, we can calculate the ratio:
[tex]\[ \text{Ratio} = \frac{36 \text{ flores}}{6 \text{ rastos}} = 6 \][/tex]
We use this ratio to find the missing values.
1. Column for 4 rastos:
[tex]\[ 4 \text{ rastos} \rightarrow x \text{ flores} \][/tex]
Using the ratio:
[tex]\[ x = 4 \times 6 = 24 \text{ flores} \][/tex]
2. Column for 1 rasto:
[tex]\[ 1 \text{ rasto} \rightarrow y \text{ flores} \][/tex]
Using the ratio:
[tex]\[ y = 1 \times 6 = 6 \text{ flores} \][/tex]
3. Column where there's no rasto (N/A) but 72 flores:
[tex]\[ z \text{ rastos} \rightarrow 72 \text{ flores} \][/tex]
Using the ratio:
[tex]\[ z = \frac{72}{6} = 12 \text{ rastos} \][/tex]
4. Column for 5 rastos:
[tex]\[ 5 \text{ rastos} \rightarrow w \text{ flores} \][/tex]
Using the ratio:
[tex]\[ w = 5 \times 6 = 30 \text{ flores} \][/tex]
But, according to the table, there are only 1 flor listed for 5 rastos. Hence there's probably a discrepancy, but we'll stick to what the table says, which is 1 flor.
5. Column for 15 rastos with no flores mentioned:
[tex]\[ 15 \text{ rastos} \rightarrow t \text{ flores} \][/tex]
Using the ratio:
[tex]\[ t = 15 \times 6 = 90 \text{ flores} \][/tex]
Thus, the completed table would be:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline \text{CANTIDAD DE RASTOS} & 6 & 4 & 1 & 12.0 & 5 & 15 \\ \hline \text{CANTIDAD DE FLORES} & 36 & 24.0 & 6.0 & 72 & 1 & 90.0 \\ \hline \end{array} \][/tex]
Here you go, this completes the given table with the calculated values.
The given data is:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline \text{CANTIDAD DE RASTOS} & 6 & 4 & 1 & \text{N/A} & 5 & 15 \\ \hline \text{CANTIDAD DE FLORES} & 36 & \text{N/A} & \text{N/A} & 72 & 1 & \text{N/A} \\ \hline \end{array} \][/tex]
We know that for the first entry:
[tex]\[ 6 \text{ rastos} \rightarrow 36 \text{ flores} \][/tex]
From this, we can calculate the ratio:
[tex]\[ \text{Ratio} = \frac{36 \text{ flores}}{6 \text{ rastos}} = 6 \][/tex]
We use this ratio to find the missing values.
1. Column for 4 rastos:
[tex]\[ 4 \text{ rastos} \rightarrow x \text{ flores} \][/tex]
Using the ratio:
[tex]\[ x = 4 \times 6 = 24 \text{ flores} \][/tex]
2. Column for 1 rasto:
[tex]\[ 1 \text{ rasto} \rightarrow y \text{ flores} \][/tex]
Using the ratio:
[tex]\[ y = 1 \times 6 = 6 \text{ flores} \][/tex]
3. Column where there's no rasto (N/A) but 72 flores:
[tex]\[ z \text{ rastos} \rightarrow 72 \text{ flores} \][/tex]
Using the ratio:
[tex]\[ z = \frac{72}{6} = 12 \text{ rastos} \][/tex]
4. Column for 5 rastos:
[tex]\[ 5 \text{ rastos} \rightarrow w \text{ flores} \][/tex]
Using the ratio:
[tex]\[ w = 5 \times 6 = 30 \text{ flores} \][/tex]
But, according to the table, there are only 1 flor listed for 5 rastos. Hence there's probably a discrepancy, but we'll stick to what the table says, which is 1 flor.
5. Column for 15 rastos with no flores mentioned:
[tex]\[ 15 \text{ rastos} \rightarrow t \text{ flores} \][/tex]
Using the ratio:
[tex]\[ t = 15 \times 6 = 90 \text{ flores} \][/tex]
Thus, the completed table would be:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline \text{CANTIDAD DE RASTOS} & 6 & 4 & 1 & 12.0 & 5 & 15 \\ \hline \text{CANTIDAD DE FLORES} & 36 & 24.0 & 6.0 & 72 & 1 & 90.0 \\ \hline \end{array} \][/tex]
Here you go, this completes the given table with the calculated values.