Answer :
To calculate the mean of the probability distribution, we use the formula for the expected value of a discrete random variable [tex]\(X\)[/tex]:
[tex]\[ E(X) = \sum_{i} x_i \cdot P(x_i) \][/tex]
Where:
- [tex]\( x_i \)[/tex] are the values of the random variable [tex]\(X\)[/tex] (hours studied in this case).
- [tex]\( P(x_i) \)[/tex] are the corresponding probabilities for each value [tex]\( x_i \)[/tex].
Given the probability distribution:
[tex]\[ \begin{tabular}{|c|c|} \hline \multicolumn{2}{|c|}{Probability Distribution} \\ \hline \begin{tabular}{c} Hours Studied: $X$ \end{tabular} & Probability: $P(X)$ \\ \hline 0.5 & 0.07 \\ \hline 1 & 0.2 \\ \hline 1.5 & 0.46 \\ \hline 2 & 0.2 \\ \hline 2.5 & 0.07 \\ \hline \end{tabular} \][/tex]
We can find the mean of this distribution by calculating the weighted average of these values.
Step-by-step, the calculation is as follows:
1. Multiply each value of [tex]\(X\)[/tex] by its corresponding probability:
[tex]\[ \begin{align*} 0.5 \times 0.07 &= 0.035 \\ 1 \times 0.2 &= 0.2 \\ 1.5 \times 0.46 &= 0.69 \\ 2 \times 0.2 &= 0.4 \\ 2.5 \times 0.07 &= 0.175 \\ \end{align*} \][/tex]
2. Add these products together to get the expected value [tex]\(E(X)\)[/tex]:
[tex]\[ 0.035 + 0.2 + 0.69 + 0.4 + 0.175 = 1.5 \][/tex]
Therefore, the mean of the probability distribution is:
[tex]\[ \mathbf{1.5} \][/tex]
[tex]\[ E(X) = \sum_{i} x_i \cdot P(x_i) \][/tex]
Where:
- [tex]\( x_i \)[/tex] are the values of the random variable [tex]\(X\)[/tex] (hours studied in this case).
- [tex]\( P(x_i) \)[/tex] are the corresponding probabilities for each value [tex]\( x_i \)[/tex].
Given the probability distribution:
[tex]\[ \begin{tabular}{|c|c|} \hline \multicolumn{2}{|c|}{Probability Distribution} \\ \hline \begin{tabular}{c} Hours Studied: $X$ \end{tabular} & Probability: $P(X)$ \\ \hline 0.5 & 0.07 \\ \hline 1 & 0.2 \\ \hline 1.5 & 0.46 \\ \hline 2 & 0.2 \\ \hline 2.5 & 0.07 \\ \hline \end{tabular} \][/tex]
We can find the mean of this distribution by calculating the weighted average of these values.
Step-by-step, the calculation is as follows:
1. Multiply each value of [tex]\(X\)[/tex] by its corresponding probability:
[tex]\[ \begin{align*} 0.5 \times 0.07 &= 0.035 \\ 1 \times 0.2 &= 0.2 \\ 1.5 \times 0.46 &= 0.69 \\ 2 \times 0.2 &= 0.4 \\ 2.5 \times 0.07 &= 0.175 \\ \end{align*} \][/tex]
2. Add these products together to get the expected value [tex]\(E(X)\)[/tex]:
[tex]\[ 0.035 + 0.2 + 0.69 + 0.4 + 0.175 = 1.5 \][/tex]
Therefore, the mean of the probability distribution is:
[tex]\[ \mathbf{1.5} \][/tex]