Solve for [tex]\( x \)[/tex]:

[tex]\[ 20x^2 + 10x + 5 = 11x + 6 \][/tex]

A. [tex]\( x = -\frac{1}{5}, \frac{1}{4} \)[/tex]
B. [tex]\( x = 11, 12 \)[/tex]
C. [tex]\( x = -\frac{1}{4}, \frac{1}{5} \)[/tex]
D. [tex]\( x = -12, -11 \)[/tex]



Answer :

To solve the equation [tex]\( 20x^2 + 10x + 5 = 11x + 6 \)[/tex] and determine the correct values for [tex]\( x \)[/tex], we can follow these detailed steps:

1. Move all terms to one side to set the equation to zero:

[tex]\[ 20x^2 + 10x + 5 - 11x - 6 = 0 \][/tex]

2. Combine like terms:

[tex]\[ 20x^2 + 10x - 11x + 5 - 6 = 0 \][/tex]

[tex]\[ 20x^2 - x - 1 = 0 \][/tex]

Now, we have a standard quadratic equation of the form [tex]\( ax^2 + bx + c = 0 \)[/tex], where [tex]\( a = 20 \)[/tex], [tex]\( b = -1 \)[/tex], and [tex]\( c = -1 \)[/tex].

3. Solve the quadratic equation using the quadratic formula:

The quadratic formula is given by:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Substituting the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the formula:

[tex]\[ x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(20)(-1)}}{2(20)} \][/tex]

Simplify inside the square root:

[tex]\[ x = \frac{1 \pm \sqrt{1 + 80}}{40} \][/tex]

[tex]\[ x = \frac{1 \pm \sqrt{81}}{40} \][/tex]

[tex]\[ x = \frac{1 \pm 9}{40} \][/tex]

4. Calculate the two possible values for [tex]\( x \)[/tex]:

For the positive root:

[tex]\[ x = \frac{1 + 9}{40} = \frac{10}{40} = \frac{1}{4} \][/tex]

For the negative root:

[tex]\[ x = \frac{1 - 9}{40} = \frac{-8}{40} = -\frac{1}{5} \][/tex]

So, the solutions to the equation [tex]\( 20x^2 - x - 1 = 0 \)[/tex] are [tex]\( x = -\frac{1}{5} \)[/tex] and [tex]\( x = \frac{1}{4} \)[/tex].

Thus, the correct answer is:
(A) [tex]\( x = -\frac{1}{5}, \frac{1}{4} \)[/tex]