Which polynomial function [tex]$f(x)$[/tex] has a leading coefficient of 1, roots [tex]$-4, 2$[/tex], and [tex][tex]$9$[/tex][/tex] with multiplicity 1, and root [tex]$-5$[/tex] with multiplicity 3?

A. [tex]$f(x)=3(x+5)(x+4)(x-2)(x-9)$[/tex]

B. [tex][tex]$f(x)=3(x-5)(x-4)(x+2)(x+9)$[/tex][/tex]

C. [tex]$f(x)=(x+5)(x+5)(x+5)(x+4)(x-2)(x-9)$[/tex]

D. [tex]$f(x)=(x-5)(x-5)(x-5)(x-4)(x+2)(x+9)$[/tex]



Answer :

To find a polynomial function [tex]\( f(x) \)[/tex] with a leading coefficient of 1 that has roots at [tex]\( -4 \)[/tex], [tex]\( 2 \)[/tex], and [tex]\( 9 \)[/tex] each with multiplicity 1, and a root at [tex]\( -5 \)[/tex] with multiplicity 3, follow these steps:

### Step-by-Step Solution:

1. Identify the roots and multiplicities:
- Root [tex]\( -4 \)[/tex] with multiplicity 1
- Root [tex]\( 2 \)[/tex] with multiplicity 1
- Root [tex]\( 9 \)[/tex] with multiplicity 1
- Root [tex]\( -5 \)[/tex] with multiplicity 3

2. Construct factors for each root:
- The factor for root [tex]\( -4 \)[/tex] is [tex]\( (x + 4) \)[/tex].
- The factor for root [tex]\( 2 \)[/tex] is [tex]\( (x - 2) \)[/tex].
- The factor for root [tex]\( 9 \)[/tex] is [tex]\( (x - 9) \)[/tex].
- The factor for root [tex]\( -5 \)[/tex] with multiplicity 3 is [tex]\( (x + 5)^3 \)[/tex].

3. Form the polynomial by multiplying the factors:
[tex]\[ f(x) = (x + 5)^3 \cdot (x + 4) \cdot (x - 2) \cdot (x - 9) \][/tex]

4. Check the given options:

- First option: [tex]\( f(x) = 3(x + 5)(x + 4)(x - 2)(x - 9) \)[/tex]
- Second option: [tex]\( f(x) = 3(x - 5)(x - 4)(x + 2)(x + 9) \)[/tex]
- Third option: [tex]\( f(x) = (x + 5)(x + 5)(x + 5)(x + 4)(x - 2)(x - 9) \)[/tex]
- Fourth option: [tex]\( f(x) = (x - 5)(x - 5)(x - 5)(x - 4)(x + 2)(x + 9) \)[/tex]

From the options given, the third option matches the derived polynomial function:
[tex]\[ f(x) = (x + 5)^3 \cdot (x + 4) \cdot (x - 2) \cdot (x - 9) \][/tex]

Therefore, the correct polynomial function is given in the third choice:
[tex]\[ f(x) = (x + 5)(x + 5)(x + 5)(x + 4)(x - 2)(x - 9) \][/tex]

The answer is 3.