Answer :
To determine the gravitational force pulling an object toward the center of the Earth, we use the formula for gravitational force, which is given by:
[tex]\[ F = m \times g \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force in Newtons (N)
- [tex]\( m \)[/tex] is the mass of the object in kilograms (kg)
- [tex]\( g \)[/tex] is the acceleration due to gravity, approximately [tex]\( 9.81 \, \text{m/s}^2 \)[/tex]
Given:
- The mass of the object [tex]\( m \)[/tex] = 100 kg
- The acceleration due to gravity [tex]\( g \)[/tex] = 9.81 m/s[tex]\(^2\)[/tex]
Let's plug these values into the formula:
[tex]\[ F = 100 \, \text{kg} \times 9.81 \, \text{m/s}^2 \][/tex]
Performing the multiplication gives us:
[tex]\[ F = 981 \, \text{N} \][/tex]
Therefore, the correct expression for the gravitational force pulling the object toward the center of the Earth is:
[tex]\[ \boxed{981 \, \text{N}} \][/tex]
Given the options:
- A. 981 kg/s
- B. 981 km/s
- C. 981 N
- D. 981 kg/m
The correct answer is [tex]\( \boxed{\text{C. 981 N}} \)[/tex].
[tex]\[ F = m \times g \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force in Newtons (N)
- [tex]\( m \)[/tex] is the mass of the object in kilograms (kg)
- [tex]\( g \)[/tex] is the acceleration due to gravity, approximately [tex]\( 9.81 \, \text{m/s}^2 \)[/tex]
Given:
- The mass of the object [tex]\( m \)[/tex] = 100 kg
- The acceleration due to gravity [tex]\( g \)[/tex] = 9.81 m/s[tex]\(^2\)[/tex]
Let's plug these values into the formula:
[tex]\[ F = 100 \, \text{kg} \times 9.81 \, \text{m/s}^2 \][/tex]
Performing the multiplication gives us:
[tex]\[ F = 981 \, \text{N} \][/tex]
Therefore, the correct expression for the gravitational force pulling the object toward the center of the Earth is:
[tex]\[ \boxed{981 \, \text{N}} \][/tex]
Given the options:
- A. 981 kg/s
- B. 981 km/s
- C. 981 N
- D. 981 kg/m
The correct answer is [tex]\( \boxed{\text{C. 981 N}} \)[/tex].