Which expression is equivalent to [tex]$\log _2 6^x$[/tex]?

A. [tex]$6 \log _x 2$[/tex]
B. [tex][tex]$6 \log _2 x$[/tex][/tex]
C. [tex]$2 \log _x 6$[/tex]
D. [tex]$x \log _2 6$[/tex]



Answer :

To determine which expression is equivalent to [tex]\(\log_2 (6^x)\)[/tex], we can use the properties of logarithms, specifically the power rule.

The power rule states:
[tex]\[ \log_b (a^c) = c \cdot \log_b (a) \][/tex]

Here, the base [tex]\(b\)[/tex] is 2, the argument [tex]\(a\)[/tex] is 6, and the exponent [tex]\(c\)[/tex] is [tex]\(x\)[/tex]. Applying the power rule to the given expression:

[tex]\[ \log_2 (6^x) = x \cdot \log_2 (6) \][/tex]

Thus, the expression [tex]\(x \log_2 6\)[/tex] is equivalent to [tex]\(\log_2 (6^x)\)[/tex]. Therefore, the correct choice is:

[tex]\[ \boxed{x \log_2 6} \][/tex]