To determine which expression is equivalent to [tex]\(\log_2 (6^x)\)[/tex], we can use the properties of logarithms, specifically the power rule.
The power rule states:
[tex]\[
\log_b (a^c) = c \cdot \log_b (a)
\][/tex]
Here, the base [tex]\(b\)[/tex] is 2, the argument [tex]\(a\)[/tex] is 6, and the exponent [tex]\(c\)[/tex] is [tex]\(x\)[/tex]. Applying the power rule to the given expression:
[tex]\[
\log_2 (6^x) = x \cdot \log_2 (6)
\][/tex]
Thus, the expression [tex]\(x \log_2 6\)[/tex] is equivalent to [tex]\(\log_2 (6^x)\)[/tex]. Therefore, the correct choice is:
[tex]\[
\boxed{x \log_2 6}
\][/tex]