Given the linear functions [tex]f(x)=x-3[/tex] and [tex]g(x)=-2x+4[/tex], determine [tex](f \cdot g)(x)[/tex].

A. [tex](f \cdot g)(x)=-2x-12[/tex]
B. [tex](f \cdot g)(x)=-2x^2-12[/tex]
C. [tex](f \cdot g)(x)=-2x^2-2x-12[/tex]
D. [tex](f \cdot g)(x)=-2x^2+10x-12[/tex]



Answer :

To determine [tex]\((f \cdot g)(x)\)[/tex], we need to find the product of the two functions [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]. We start by expressing the given functions:

[tex]\[ f(x) = x - 3 \][/tex]
[tex]\[ g(x) = -2x + 4 \][/tex]

To find [tex]\((f \cdot g)(x)\)[/tex], we multiply [tex]\(f(x)\)[/tex] by [tex]\(g(x)\)[/tex]:

[tex]\[ (f \cdot g)(x) = f(x) \cdot g(x) = (x - 3) \cdot (-2x + 4) \][/tex]

Next, we apply the distributive property to expand the expression:

[tex]\[ (x - 3)(-2x + 4) = x \cdot (-2x) + x \cdot 4 - 3 \cdot (-2x) - 3 \cdot 4 \][/tex]

Calculate each term:

[tex]\[ x \cdot (-2x) = -2x^2 \][/tex]
[tex]\[ x \cdot 4 = 4x \][/tex]
[tex]\[ -3 \cdot (-2x) = 6x \][/tex]
[tex]\[ -3 \cdot 4 = -12 \][/tex]

Now, add all the terms together:

[tex]\[ (f \cdot g)(x) = -2x^2 + 4x + 6x - 12 \][/tex]

Combine like terms:

[tex]\[ (f \cdot g)(x) = -2x^2 + (4x + 6x) - 12 = -2x^2 + 10x - 12 \][/tex]

Thus, the simplified expression for [tex]\((f \cdot g)(x)\)[/tex] is:

[tex]\[ (f \cdot g)(x) = -2x^2 + 10x - 12 \][/tex]

Therefore, the correct answer is:

[tex]\((f \cdot g)(x) = -2x^2 + 10x - 12\)[/tex]