Use the properties of logarithms to expand [tex]\log \frac{y^4}{z}[/tex].

Each logarithm should involve only one variable and should not have any exponents or fractions. Assume that all variables are positive.

[tex]\[
\log \frac{y^4}{z} =
\][/tex]

[tex]\[
\log y^4 - \log z
\][/tex]

[tex]\[
4 \log y - \log z
\][/tex]



Answer :

To expand [tex]\(\log \frac{y^4}{z}\)[/tex] using the properties of logarithms, we follow these steps:

1. Apply the Quotient Rule: The quotient rule for logarithms states that [tex]\(\log \frac{a}{b} = \log a - \log b\)[/tex]. Applying this to our expression, we get:
[tex]\[ \log \frac{y^4}{z} = \log (y^4) - \log (z) \][/tex]

2. Apply the Power Rule: The power rule for logarithms states that [tex]\(\log (a^b) = b \log (a)\)[/tex]. For the term [tex]\(\log (y^4)\)[/tex], we apply the power rule:
[tex]\[ \log (y^4) = 4 \log (y) \][/tex]

3. Combine the Results: Substituting this back into our expression, we have:
[tex]\[ \log \frac{y^4}{z} = 4 \log (y) - \log (z) \][/tex]

Thus, the expanded form of [tex]\(\log \frac{y^4}{z}\)[/tex] is:
[tex]\[ 4 \log (y) - \log (z) \][/tex]