Solve for [tex]\( x \)[/tex].

[tex]\[ 3x = 6x - 2 \][/tex]


Solve the system of equations:

[tex]\[
\begin{array}{l}
3x - 4y = 10 \\
2x - 4y = 6
\end{array}
\][/tex]

If [tex]\((x, y)\)[/tex] satisfies the given system of equations, what is the value of [tex]\( y \)[/tex]?

Choose one answer:
A. [tex]\(\frac{1}{10}\)[/tex]
B. [tex]\(\frac{1}{2}\)[/tex]
C. [tex]\(\frac{16}{5}\)[/tex]
D. 4



Answer :

To solve for [tex]\( y \)[/tex] in the given system of equations:

[tex]\[ \begin{array}{l} 3x - 4y = 10 \\ 2x - 4y = 6 \end{array} \][/tex]

we will use the method of elimination.

1. First, let's subtract the second equation from the first equation. This will help eliminate [tex]\( y \)[/tex] from the equations:

[tex]\[ (3x - 4y) - (2x - 4y) = 10 - 6 \][/tex]

2. Simplify the left-hand side and the right-hand side of the equation:

[tex]\[ (3x - 2x) - (4y - 4y) = 4 \][/tex]

[tex]\[ x = 4 \][/tex]

3. Now that we have [tex]\( x = 4 \)[/tex], we substitute this value back into one of the original equations to solve for [tex]\( y \)[/tex]. Let's substitute it into the first equation:

[tex]\[ 3(4) - 4y = 10 \][/tex]

4. Simplify and solve for [tex]\( y \)[/tex]:

[tex]\[ 12 - 4y = 10 \][/tex]

[tex]\[ -4y = 10 - 12 \][/tex]

[tex]\[ -4y = -2 \][/tex]

[tex]\[ y = \frac{-2}{-4} \][/tex]

[tex]\[ y = \frac{1}{2} \][/tex]

Thus, the value of [tex]\( y \)[/tex] that satisfies the given system of equations is:

[tex]\[ \boxed{\frac{1}{2}} \][/tex]