Answer :
To solve for [tex]\( y \)[/tex] in the given system of equations:
[tex]\[ \begin{array}{l} 3x - 4y = 10 \\ 2x - 4y = 6 \end{array} \][/tex]
we will use the method of elimination.
1. First, let's subtract the second equation from the first equation. This will help eliminate [tex]\( y \)[/tex] from the equations:
[tex]\[ (3x - 4y) - (2x - 4y) = 10 - 6 \][/tex]
2. Simplify the left-hand side and the right-hand side of the equation:
[tex]\[ (3x - 2x) - (4y - 4y) = 4 \][/tex]
[tex]\[ x = 4 \][/tex]
3. Now that we have [tex]\( x = 4 \)[/tex], we substitute this value back into one of the original equations to solve for [tex]\( y \)[/tex]. Let's substitute it into the first equation:
[tex]\[ 3(4) - 4y = 10 \][/tex]
4. Simplify and solve for [tex]\( y \)[/tex]:
[tex]\[ 12 - 4y = 10 \][/tex]
[tex]\[ -4y = 10 - 12 \][/tex]
[tex]\[ -4y = -2 \][/tex]
[tex]\[ y = \frac{-2}{-4} \][/tex]
[tex]\[ y = \frac{1}{2} \][/tex]
Thus, the value of [tex]\( y \)[/tex] that satisfies the given system of equations is:
[tex]\[ \boxed{\frac{1}{2}} \][/tex]
[tex]\[ \begin{array}{l} 3x - 4y = 10 \\ 2x - 4y = 6 \end{array} \][/tex]
we will use the method of elimination.
1. First, let's subtract the second equation from the first equation. This will help eliminate [tex]\( y \)[/tex] from the equations:
[tex]\[ (3x - 4y) - (2x - 4y) = 10 - 6 \][/tex]
2. Simplify the left-hand side and the right-hand side of the equation:
[tex]\[ (3x - 2x) - (4y - 4y) = 4 \][/tex]
[tex]\[ x = 4 \][/tex]
3. Now that we have [tex]\( x = 4 \)[/tex], we substitute this value back into one of the original equations to solve for [tex]\( y \)[/tex]. Let's substitute it into the first equation:
[tex]\[ 3(4) - 4y = 10 \][/tex]
4. Simplify and solve for [tex]\( y \)[/tex]:
[tex]\[ 12 - 4y = 10 \][/tex]
[tex]\[ -4y = 10 - 12 \][/tex]
[tex]\[ -4y = -2 \][/tex]
[tex]\[ y = \frac{-2}{-4} \][/tex]
[tex]\[ y = \frac{1}{2} \][/tex]
Thus, the value of [tex]\( y \)[/tex] that satisfies the given system of equations is:
[tex]\[ \boxed{\frac{1}{2}} \][/tex]