Describe the translation.

[tex]
y = (x + 3)^2 + 4 \rightarrow y = (x + 1)^2 + 6
[/tex]

A. [tex] T_{\ \textless \ 2, 2\ \textgreater \ } [/tex]

B. [tex] T_{\ \textless \ 2, -2\ \textgreater \ } [/tex]

C. [tex] T_{\ \textless \ -2, 2\ \textgreater \ } [/tex]

D. [tex] T_{\ \textless \ -2, -2\ \textgreater \ } [/tex]



Answer :

Certainly! Let's analyze the given transformation step by step to determine the correct translation.

We start with the equation of a parabola:
[tex]\[ y = (x + 3)^2 + 4 \][/tex]

and we want to transform it to:
[tex]\[ y = (x + 1)^2 + 6 \][/tex]

### Step-by-Step Analysis:

1. Identify the Transformation in the [tex]\(x\)[/tex]-term:

- In the original equation, we have the term [tex]\( (x + 3) \)[/tex].
- In the transformed equation, this term has changed to [tex]\( (x + 1) \)[/tex].

To find the horizontal shift:
- We compare [tex]\( x + 3 \)[/tex] with [tex]\( x + 1 \)[/tex].
- The transformation from [tex]\( x + 3 \)[/tex] to [tex]\( x + 1 \)[/tex] indicates a shift to the left by 2 units because [tex]\(3 - 2 = 1\)[/tex].

Thus, the horizontal translation is [tex]\(-2\)[/tex].

2. Identify the Transformation in the constant term:

- In the original equation, the constant term outside the squared part is [tex]\( +4 \)[/tex].
- In the transformed equation, this term has changed to [tex]\( +6 \)[/tex].

To find the vertical shift:
- We compare [tex]\( +4 \)[/tex] to [tex]\( +6 \)[/tex].
- The transformation from [tex]\( +4 \)[/tex] to [tex]\( +6 \)[/tex] indicates a shift upwards by 2 units because [tex]\(4 + 2 = 6\)[/tex].

Thus, the vertical translation is [tex]\(+2\)[/tex].

### Conclusion:
Combining both transformations, we get a translation vector [tex]\( T \)[/tex]. The horizontal shift is [tex]\(-2\)[/tex], and the vertical shift is [tex]\( +2 \)[/tex]. Therefore, the translation vector is:
[tex]\[ T_{<-2, 2\rangle} \][/tex]

This matches with option:
[tex]\[ \text{C. } T_{<-2, 2\rangle} \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{\text{C. } T_{<-2, 2\rangle}} \][/tex]