Solve for [tex]$c$[/tex].

First, complete the equation:
[tex]\[
c^2 = a^2 + b^2 - 2ab \cos C
\][/tex]
[tex]\[
c^2 = 3^2 + [?]^2 - 2(3)(?)(\cos C)
\][/tex]



Answer :

To solve for [tex]\( c \)[/tex] given the equation [tex]\( c^2 = a^2 + b^2 - 2ab \cos C \)[/tex], where [tex]\( a = 3 \)[/tex], [tex]\( b = 3 \)[/tex], and [tex]\( C = 60^\circ \)[/tex], follow these steps:

1. Complete the equation with known values:
[tex]\[ c^2 = 3^2 + 3^2 - 2 \cdot 3 \cdot 3 \cdot \cos(60^\circ) \][/tex]

2. Calculate the values inside the equation:
[tex]\[ 3^2 = 9 \][/tex]
Now substitute these back into the equation:
[tex]\[ c^2 = 9 + 9 - 2 \cdot 3 \cdot 3 \cdot \cos(60^\circ) \][/tex]

3. Calculate the cosine of [tex]\( 60^\circ \)[/tex]:
[tex]\[ \cos(60^\circ) = \frac{1}{2} \][/tex]
Substitute this back into the equation:
[tex]\[ c^2 = 9 + 9 - 2 \cdot 3 \cdot 3 \cdot \frac{1}{2} \][/tex]

4. Simplify the multiplication:
[tex]\[ 2 \cdot 3 \cdot 3 \cdot \frac{1}{2} = 9 \][/tex]
Substitute this into the equation:
[tex]\[ c^2 = 9 + 9 - 9 \][/tex]

5. Combine like terms:
[tex]\[ c^2 = 9 \][/tex]

6. Find [tex]\( c \)[/tex] by taking the square root of both sides:
[tex]\[ c = \sqrt{9} = 3 \][/tex]

Therefore, [tex]\( c \)[/tex] is [tex]\( 3 \)[/tex].