Answer :
Let's simplify the expression step by step:
[tex]\[ \frac{i + 2i^2 + 3i^3 + 4i^4 + 5i^5 + 6i^6 + 7i^8}{8i^9 + 9i^{10} + 10i^{11} + 11i^{12} + 12i^{13}} \][/tex]
First, recall the fundamental powers of the imaginary unit [tex]\(i\)[/tex]:
[tex]\[ \begin{align*} i^1 &= i \\ i^2 &= -1 \\ i^3 &= -i \\ i^4 &= 1 \end{align*} \][/tex]
These values repeat every four powers. Using this periodicity, we can express higher powers in terms of [tex]\(i, -1, -i,\)[/tex] and 1.
Let's simplify the numerator:
[tex]\[ \begin{align*} i &= i \\ 2i^2 &= 2(-1) = -2 \\ 3i^3 &= 3(-i) = -3i \\ 4i^4 &= 4(1) = 4 \\ 5i^5 &= 5(i) = 5i \\ 6i^6 &= 6(-1) = -6 \\ 7i^8 &= 7(1) = 7 \end{align*} \][/tex]
So, the numerator becomes:
[tex]\[ i - 2 - 3i + 4 + 5i - 6 + 7 \][/tex]
Combine like terms:
[tex]\[ (i - 3i + 5i) + (-2 + 4 - 6 + 7) = (3i) + (3) \][/tex]
Thus, the simplified numerator is:
[tex]\[ 3 + 3i \][/tex]
Next, let's simplify the denominator:
[tex]\[ \begin{align*} 8i^9 &= 8i \\ 9i^{10} &= 9i^2 = 9(-1) = -9 \\ 10i^{11} &= 10i^3 = 10(-i) = -10i \\ 11i^{12} &= 11(1) = 11 \\ 12i^{13} &= 12i \end{align*} \][/tex]
So, the denominator becomes:
[tex]\[ 8i - 9 - 10i + 11 + 12i \][/tex]
Combine like terms:
[tex]\[ (8i - 10i + 12i) + (-9 + 11) = 10i + 2 \][/tex]
Thus, the simplified denominator is:
[tex]\[ 2 + 10i \][/tex]
Now we have:
[tex]\[ \frac{3 + 3i}{2 + 10i} \][/tex]
To simplify the fraction further, we multiply the numerator and the denominator by the complex conjugate of the denominator. The complex conjugate of [tex]\(2 + 10i\)[/tex] is [tex]\(2 - 10i\)[/tex]:
[tex]\[ \frac{(3 + 3i)(2 - 10i)}{(2 + 10i)(2 - 10i)} \][/tex]
Calculate the numerator:
[tex]\[ (3 + 3i)(2 - 10i) = 6 - 30i + 6i - 30i^2 = 6 - 24i + 30 = 36 - 24i \][/tex]
And the denominator:
[tex]\[ (2 + 10i)(2 - 10i) = 4 - 100i^2 = 4 + 100 = 104 \][/tex]
So the fraction simplifies to:
[tex]\[ \frac{36 - 24i}{104} \][/tex]
Which can further be simplified by dividing both the real and the imaginary components by 104:
[tex]\[ \frac{36}{104} - \frac{24i}{104} = \frac{9}{26} - \frac{3i}{13} \][/tex]
Therefore, the fully simplified expression is:
[tex]\[ \frac{9}{26} - \frac{3i}{13} \][/tex]
[tex]\[ \frac{i + 2i^2 + 3i^3 + 4i^4 + 5i^5 + 6i^6 + 7i^8}{8i^9 + 9i^{10} + 10i^{11} + 11i^{12} + 12i^{13}} \][/tex]
First, recall the fundamental powers of the imaginary unit [tex]\(i\)[/tex]:
[tex]\[ \begin{align*} i^1 &= i \\ i^2 &= -1 \\ i^3 &= -i \\ i^4 &= 1 \end{align*} \][/tex]
These values repeat every four powers. Using this periodicity, we can express higher powers in terms of [tex]\(i, -1, -i,\)[/tex] and 1.
Let's simplify the numerator:
[tex]\[ \begin{align*} i &= i \\ 2i^2 &= 2(-1) = -2 \\ 3i^3 &= 3(-i) = -3i \\ 4i^4 &= 4(1) = 4 \\ 5i^5 &= 5(i) = 5i \\ 6i^6 &= 6(-1) = -6 \\ 7i^8 &= 7(1) = 7 \end{align*} \][/tex]
So, the numerator becomes:
[tex]\[ i - 2 - 3i + 4 + 5i - 6 + 7 \][/tex]
Combine like terms:
[tex]\[ (i - 3i + 5i) + (-2 + 4 - 6 + 7) = (3i) + (3) \][/tex]
Thus, the simplified numerator is:
[tex]\[ 3 + 3i \][/tex]
Next, let's simplify the denominator:
[tex]\[ \begin{align*} 8i^9 &= 8i \\ 9i^{10} &= 9i^2 = 9(-1) = -9 \\ 10i^{11} &= 10i^3 = 10(-i) = -10i \\ 11i^{12} &= 11(1) = 11 \\ 12i^{13} &= 12i \end{align*} \][/tex]
So, the denominator becomes:
[tex]\[ 8i - 9 - 10i + 11 + 12i \][/tex]
Combine like terms:
[tex]\[ (8i - 10i + 12i) + (-9 + 11) = 10i + 2 \][/tex]
Thus, the simplified denominator is:
[tex]\[ 2 + 10i \][/tex]
Now we have:
[tex]\[ \frac{3 + 3i}{2 + 10i} \][/tex]
To simplify the fraction further, we multiply the numerator and the denominator by the complex conjugate of the denominator. The complex conjugate of [tex]\(2 + 10i\)[/tex] is [tex]\(2 - 10i\)[/tex]:
[tex]\[ \frac{(3 + 3i)(2 - 10i)}{(2 + 10i)(2 - 10i)} \][/tex]
Calculate the numerator:
[tex]\[ (3 + 3i)(2 - 10i) = 6 - 30i + 6i - 30i^2 = 6 - 24i + 30 = 36 - 24i \][/tex]
And the denominator:
[tex]\[ (2 + 10i)(2 - 10i) = 4 - 100i^2 = 4 + 100 = 104 \][/tex]
So the fraction simplifies to:
[tex]\[ \frac{36 - 24i}{104} \][/tex]
Which can further be simplified by dividing both the real and the imaginary components by 104:
[tex]\[ \frac{36}{104} - \frac{24i}{104} = \frac{9}{26} - \frac{3i}{13} \][/tex]
Therefore, the fully simplified expression is:
[tex]\[ \frac{9}{26} - \frac{3i}{13} \][/tex]