a. Give a mathematical expression for the probability density function of battery life.

A. [tex]f(x) = \left\{\begin{array}{cc}\frac{1}{3.5} & \text{for } 8.5 \leq x \leq 12 \\ 0 & \text{elsewhere} \end{array}\right.[/tex]
B. [tex]f(x) = \left\{\begin{array}{cc}\frac{2}{3.5} & \text{for } 8.5 \leq x \leq 12 \\ 0 & \text{elsewhere} \end{array}\right.[/tex]
C. [tex]f(x) = \left\{\begin{array}{cc}\frac{1}{1.5} & \text{for } 8.5 \leq x \leq 10 \\ 0 & \text{elsewhere} \end{array}\right.[/tex]

The correct answer is: A

b. What is the probability that the battery life for an iPad Mini will be 10 hours or less (to 4 decimals)?

0.4286

c. What is the probability that the battery life for an iPad Mini will be at least 11 hours (to 4 decimals)?

0.2857

d. What is the probability that the battery life for an iPad Mini will be between 9.5 and 11.5 hours (to 4 decimals)?

0.5714

e. In a shipment of 100 iPad Minis, how many should have a battery life of at least 9 hours (to the nearest whole value)?



Answer :

Let's break down each part of this problem step-by-step.

### a. Mathematical Expression for the Probability Density Function

Given are three options for the probability density function [tex]\( f(x) \)[/tex] of the battery life:

- Option A:
[tex]\[ f(x) = \left\{ \begin{array}{cc} \frac{1}{3.5} & \text{for } 8.5 \leq x \leq 12 \\ 0 & \text{elsewhere} \end{array} \right. \][/tex]

- Option B:
[tex]\[ f(x) = \left\{ \begin{array}{cc} \frac{2}{3.5} & \text{for } 8.5 \leq x \leq 12 \\ 0 & \text{elsewhere} \end{array} \right. \][/tex]

- Option C:
[tex]\[ f(x) = \left\{ \begin{array}{cc} \frac{1}{1.5} & \text{for } 8.5 \leq x \leq 10 \\ 0 & \text{elsewhere} \end{array} \right. \][/tex]

The correct mathematical expression is:

[tex]\[ A \][/tex]

### b. Probability that Battery Life Will Be 10 Hours or Less

The probability that the battery life is 10 hours or less can be found by integrating the probability density function [tex]\( f(x) \)[/tex] from 8.5 to 10:

[tex]\[ P(X \leq 10) = \int_{8.5}^{10} f(x) \, dx \][/tex]

Given [tex]\( f(x) = \frac{1}{3.5} \)[/tex] over this interval:

[tex]\[ P(X \leq 10) = (10 - 8.5) \cdot \frac{1}{3.5} = \frac{1.5}{3.5} \approx 0.4286 \][/tex]

So, the probability is:

[tex]\[ 0.4286 \][/tex]

### c. Probability that Battery Life Will Be at Least 11 Hours

The probability that the battery life is at least 11 hours can be found by integrating [tex]\( f(x) \)[/tex] from 11 to 12:

[tex]\[ P(X \geq 11) = \int_{11}^{12} f(x) \, dx \][/tex]

Given [tex]\( f(x) = \frac{1}{3.5} \)[/tex] over this interval:

[tex]\[ P(X \geq 11) = (12 - 11) \cdot \frac{1}{3.5} = \frac{1}{3.5} \approx 0.2857 \][/tex]

So, the probability is:

[tex]\[ 0.2857 \][/tex]

### d. Probability that Battery Life Will Be Between 9.5 and 11.5 Hours

The probability that the battery life is between 9.5 and 11.5 hours can be found by integrating [tex]\( f(x) \)[/tex] from 9.5 to 11.5:

[tex]\[ P(9.5 \leq X \leq 11.5) = \int_{9.5}^{11.5} f(x) \, dx \][/tex]

Given [tex]\( f(x) = \frac{1}{3.5} \)[/tex] over this interval:

[tex]\[ P(9.5 \leq X \leq 11.5) = (11.5 - 9.5) \cdot \frac{1}{3.5} = \frac{2}{3.5} \approx 0.5714 \][/tex]

So, the probability is:

[tex]\[ 0.5714 \][/tex]

### e. Number of iPad Minis with Battery Life of At Least 9 Hours

To find the number of iPad Minis with a battery life of at least 9 hours in a shipment of 100 units, we compute the probability that the battery life is at least 9 hours and then multiply it by 100:

[tex]\[ P(X \geq 9) = \int_{9}^{12} f(x) \, dx \][/tex]

Given [tex]\( f(x) = \frac{1}{3.5} \)[/tex] over this interval:

[tex]\[ P(X \geq 9) = (12 - 9) \cdot \frac{1}{3.5} = \frac{3}{3.5} \][/tex]

Multiplying by 100:

[tex]\[ \text{Number of iPad Minis} = \frac{3}{3.5} \cdot 100 \approx 85.7143 \][/tex]

Rounded to the nearest whole number:

[tex]\[ 86 \][/tex]

So, the number of iPad Minis with at least 9 hours of battery life is:

[tex]\[ 86 \][/tex]