Answer :
Let's solve the system of equations step by step.
The given system is:
[tex]\[ \begin{aligned} 1) & \quad x - 2 = 3z \quad \text{(Equation 1)} \\ 2) & \quad 3x = -4y - z - 4 \quad \text{(Equation 2)} \end{aligned} \][/tex]
### Step 1: Express [tex]\( x \)[/tex] in terms of [tex]\( z \)[/tex]
From Equation 1:
[tex]\[ x - 2 = 3z \][/tex]
Adding 2 to both sides:
[tex]\[ x = 3z + 2 \quad \text{(Equation 3)} \][/tex]
### Step 2: Substitute Equation 3 into Equation 2
Substitute [tex]\( x = 3z + 2 \)[/tex] into Equation 2:
[tex]\[ 3(3z + 2) = -4y - z - 4 \][/tex]
Simplify the left side:
[tex]\[ 9z + 6 = -4y - z - 4 \][/tex]
Add [tex]\( z \)[/tex] and 4 to both sides:
[tex]\[ 9z + z + 6 + 4 = -4y \][/tex]
[tex]\[ 10z + 10 = -4y \][/tex]
Divide both sides by -4 to solve for [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{10z + 10}{4} \][/tex]
Simplify the fraction:
[tex]\[ y = -\frac{10(z + 1)}{4} \][/tex]
[tex]\[ y = -\frac{5}{2}(z + 1) \quad \text{(Equation 4)} \][/tex]
### Step 3: Parameterize the free variable [tex]\( z \)[/tex]
Since [tex]\( z \)[/tex] is the free variable, we can use the parameter [tex]\( t \)[/tex] to represent [tex]\( z \)[/tex]:
Let [tex]\( z = t \)[/tex].
### Step 4: Express [tex]\( x \)[/tex] and [tex]\( y \)[/tex] in terms of [tex]\( t \)[/tex]
Using [tex]\( z = t \)[/tex]:
From Equation 3:
[tex]\[ x = 3z + 2 = 3t + 2 \][/tex]
From Equation 4:
[tex]\[ y = -\frac{5}{2}(z + 1) = -\frac{5}{2}(t + 1) \][/tex]
Thus, the parameterized solutions are:
[tex]\[ \begin{aligned} x &= 3t + 2 \\ y &= -\frac{5}{2}(t + 1) \\ z &= t \end{aligned} \][/tex]
So, the final parameterized solution is:
[tex]\[ \begin{array}{l} x = 3t + 2 \\ y = -\frac{5}{2}(t + 1) \\ z = t \end{array} \][/tex]
The given system is:
[tex]\[ \begin{aligned} 1) & \quad x - 2 = 3z \quad \text{(Equation 1)} \\ 2) & \quad 3x = -4y - z - 4 \quad \text{(Equation 2)} \end{aligned} \][/tex]
### Step 1: Express [tex]\( x \)[/tex] in terms of [tex]\( z \)[/tex]
From Equation 1:
[tex]\[ x - 2 = 3z \][/tex]
Adding 2 to both sides:
[tex]\[ x = 3z + 2 \quad \text{(Equation 3)} \][/tex]
### Step 2: Substitute Equation 3 into Equation 2
Substitute [tex]\( x = 3z + 2 \)[/tex] into Equation 2:
[tex]\[ 3(3z + 2) = -4y - z - 4 \][/tex]
Simplify the left side:
[tex]\[ 9z + 6 = -4y - z - 4 \][/tex]
Add [tex]\( z \)[/tex] and 4 to both sides:
[tex]\[ 9z + z + 6 + 4 = -4y \][/tex]
[tex]\[ 10z + 10 = -4y \][/tex]
Divide both sides by -4 to solve for [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{10z + 10}{4} \][/tex]
Simplify the fraction:
[tex]\[ y = -\frac{10(z + 1)}{4} \][/tex]
[tex]\[ y = -\frac{5}{2}(z + 1) \quad \text{(Equation 4)} \][/tex]
### Step 3: Parameterize the free variable [tex]\( z \)[/tex]
Since [tex]\( z \)[/tex] is the free variable, we can use the parameter [tex]\( t \)[/tex] to represent [tex]\( z \)[/tex]:
Let [tex]\( z = t \)[/tex].
### Step 4: Express [tex]\( x \)[/tex] and [tex]\( y \)[/tex] in terms of [tex]\( t \)[/tex]
Using [tex]\( z = t \)[/tex]:
From Equation 3:
[tex]\[ x = 3z + 2 = 3t + 2 \][/tex]
From Equation 4:
[tex]\[ y = -\frac{5}{2}(z + 1) = -\frac{5}{2}(t + 1) \][/tex]
Thus, the parameterized solutions are:
[tex]\[ \begin{aligned} x &= 3t + 2 \\ y &= -\frac{5}{2}(t + 1) \\ z &= t \end{aligned} \][/tex]
So, the final parameterized solution is:
[tex]\[ \begin{array}{l} x = 3t + 2 \\ y = -\frac{5}{2}(t + 1) \\ z = t \end{array} \][/tex]