Answer :

To solve the quadratic equation [tex]\( y = 3x^2 - 16x - 12 \)[/tex], we need to find the values of [tex]\( x \)[/tex] that make [tex]\( y = 0 \)[/tex]. Essentially, we're looking for the roots of the equation:

[tex]\[ 3x^2 - 16x - 12 = 0 \][/tex]

Here's a step-by-step method you can use to solve this quadratic equation:

1. Identify the coefficients:
- [tex]\( a = 3 \)[/tex]
- [tex]\( b = -16 \)[/tex]
- [tex]\( c = -12 \)[/tex]

2. Use the quadratic formula:
The quadratic formula is given by:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

3. Calculate the discriminant:
The discriminant ([tex]\( \Delta \)[/tex]) is the part of the quadratic formula under the square root:

[tex]\[ \Delta = b^2 - 4ac \][/tex]

Substitute the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:

[tex]\[ \Delta = (-16)^2 - 4 \cdot 3 \cdot (-12) \][/tex]

[tex]\[ \Delta = 256 + 144 \][/tex]

[tex]\[ \Delta = 400 \][/tex]

4. Compute the roots:
Substitute [tex]\( \Delta \)[/tex] and the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] back into the quadratic formula:

[tex]\[ x = \frac{-(-16) \pm \sqrt{400}}{2 \cdot 3} \][/tex]

[tex]\[ x = \frac{16 \pm 20}{6} \][/tex]

This gives us two solutions:

[tex]\[ x_1 = \frac{16 + 20}{6} = \frac{36}{6} = 6 \][/tex]

[tex]\[ x_2 = \frac{16 - 20}{6} = \frac{-4}{6} = -\frac{2}{3} \][/tex]

Therefore, the roots of the equation [tex]\( 3x^2 - 16x - 12 = 0 \)[/tex] are:

[tex]\[ x = 6 \quad \text{and} \quad x = -\frac{2}{3} \][/tex]