The endpoints of [tex]\overline{GH}[/tex] are [tex]\(G(-7, 3)\)[/tex] and [tex]\(H(1, -2)\)[/tex]. What is the midpoint of [tex]\overline{GH}[/tex]?

A. [tex]\(\left(-3, \frac{1}{2}\right)\)[/tex]

B. [tex]\(\left(4, \frac{5}{2}\right)\)[/tex]

C. [tex]\((9, -7)\)[/tex]

D. [tex]\((-6, -1)\)[/tex]



Answer :

To find the midpoint of a line segment, we use the midpoint formula. The midpoint of a line segment with endpoints [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:

[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

In this problem, the endpoints of the segment [tex]\(\overline{GH}\)[/tex] are [tex]\(G (-7, 3)\)[/tex] and [tex]\(H (1, -2)\)[/tex].

Let's apply the formula step-by-step:

1. Calculate the x-coordinate of the midpoint:

[tex]\[ \text{midpoint}_x = \frac{x_1 + x_2}{2} = \frac{-7 + 1}{2} = \frac{-6}{2} = -3 \][/tex]

2. Calculate the y-coordinate of the midpoint:

[tex]\[ \text{midpoint}_y = \frac{y_1 + y_2}{2} = \frac{3 - 2}{2} = \frac{1}{2} \][/tex]

So, the coordinates of the midpoint are [tex]\(\left( -3, \frac{1}{2} \right)\)[/tex].

Comparing this with the given options, we see that the correct choice is:

A. [tex]\(\left( -3, \frac{1}{2} \right)\)[/tex].