64. If [tex]\sqrt{x} - 1 = \sqrt{x - 3}[/tex], then the value of [tex]x[/tex] is [tex]$\qquad$[/tex] [यदि [tex]\sqrt{x} - 1 = \sqrt{x - 3}[/tex] भए, [tex]x[/tex] को मान कति हुन्छ?]



Answer :

To find the value of [tex]\( x \)[/tex] from the given equation [tex]\(\sqrt{x} - 1 = \sqrt{x - 3}\)[/tex], follow these steps:

1. Isolate one of the square roots:
Given equation:
[tex]\[ \sqrt{x} - 1 = \sqrt{x - 3} \][/tex]
Add 1 to both sides to isolate [tex]\(\sqrt{x}\)[/tex]:
[tex]\[ \sqrt{x} = \sqrt{x - 3} + 1 \][/tex]

2. Square both sides to eliminate the square roots:
By squaring both sides, we can deal with the radicals:
[tex]\[ (\sqrt{x})^2 = (\sqrt{x - 3} + 1)^2 \][/tex]
This simplifies to:
[tex]\[ x = (\sqrt{x - 3})^2 + 2\sqrt{x - 3} \cdot 1 + 1 \][/tex]
[tex]\[ x = (x - 3) + 2\sqrt{x - 3} + 1 \][/tex]
[tex]\[ x = x - 3 + 2\sqrt{x - 3} + 1 \][/tex]

3. Simplify the equation:
Combine like terms:
[tex]\[ x = x - 2 + 2\sqrt{x - 3} \][/tex]
Subtract [tex]\( x \)[/tex] from both sides to isolate the radical expression:
[tex]\[ 0 = -2 + 2\sqrt{x - 3} \][/tex]

4. Solve for the square root term:
Add 2 to both sides:
[tex]\[ 2 = 2\sqrt{x - 3} \][/tex]
Divide by 2:
[tex]\[ 1 = \sqrt{x - 3} \][/tex]

5. Square both sides again to eliminate the remaining square root:
[tex]\[ 1^2 = (\sqrt{x - 3})^2 \][/tex]
[tex]\[ 1 = x - 3 \][/tex]

6. Solve for [tex]\( x \)[/tex]:
Add 3 to both sides:
[tex]\[ x = 4 \][/tex]

Thus, the value of [tex]\( x \)[/tex] is [tex]\( \boxed{4} \)[/tex].