Answer :
Certainly! To solve the equation [tex]\(16x + 8 = 24 \left(4^{x-1}\right)\)[/tex], follow these steps:
1. Identify and simplify the components:
The given equation is:
[tex]\[ 16x + 8 = 24 \left( 4^{x-1} \right) \][/tex]
2. Rewrite the exponential term using properties of exponents:
Note that [tex]\(4 = 2^2\)[/tex], so:
[tex]\[ 4^{x-1} = (2^2)^{x-1} = 2^{2(x-1)} = 2^{2x-2} \][/tex]
Therefore, the equation becomes:
[tex]\[ 16x + 8 = 24 \cdot 2^{2x-2} \][/tex]
3. Attempt to isolate the exponential term:
Rewrite the exponential term for easier handling:
[tex]\[ 24 \cdot 2^{2x-2} = 24 \cdot \frac{2^{2x}}{2^2} = 6 \cdot 2^{2x} \][/tex]
Now, the equation is:
[tex]\[ 16x + 8 = 6 \cdot 2^{2x} \][/tex]
4. Explore possible simple solutions directly:
- For [tex]\(x = 1\)[/tex]:
[tex]\[ 16(1) + 8 = 24 \cdot 4^{1-1} \][/tex]
[tex]\[ 16 + 8 = 24 \cdot 1 \][/tex]
[tex]\[ 24 = 24 \][/tex]
Thus, [tex]\(x = 1\)[/tex] is a solution.
5. Consider the transformation to logarithmic form for a more general solution:
Rewrite the equation separating the components not involving [tex]\(x\)[/tex]:
[tex]\[ 16x + 8 = 6 \cdot 2^{2x} \implies 6 \cdot 2^{2x} - 16x - 8 = 0 \][/tex]
Here, we notice a sophisticated transcendental equation form that general solutions might involve special functions, particularly Lambert W function.
6. Apply Lambert W function (if familiar) or recognize complex transcendental solutions:
Suppose we solve the equation [tex]\(6 \cdot 2^{2x} = 16x + 8\)[/tex]:
By recognizing that exact algebraic solutions are complex, solutions involve using Lambert W function to express formally:
[tex]\[ 2^{2x} = \frac{16x + 8}{6} \implies e^{2x \ln 2} = \frac{16x+8}{6} \][/tex]
Transform for standard form involving Lambert W:
Recognize complexity and finalize;
Therefore the general solution involving Lambert W function can be:
[tex]\[ x = \frac{-\log(2) - LambertW(-3\ln(2)/8)}{2\ln(2)} \quad (alongside ~ x = 1) \][/tex]
The complete solutions to the equation are:
[tex]\[ x = 1, \quad \text{and} \quad x = \frac{-\log(2) - LambertW\left(-\frac{3 \log(2)}{8}\right)}{2\log(2)} \][/tex]
1. Identify and simplify the components:
The given equation is:
[tex]\[ 16x + 8 = 24 \left( 4^{x-1} \right) \][/tex]
2. Rewrite the exponential term using properties of exponents:
Note that [tex]\(4 = 2^2\)[/tex], so:
[tex]\[ 4^{x-1} = (2^2)^{x-1} = 2^{2(x-1)} = 2^{2x-2} \][/tex]
Therefore, the equation becomes:
[tex]\[ 16x + 8 = 24 \cdot 2^{2x-2} \][/tex]
3. Attempt to isolate the exponential term:
Rewrite the exponential term for easier handling:
[tex]\[ 24 \cdot 2^{2x-2} = 24 \cdot \frac{2^{2x}}{2^2} = 6 \cdot 2^{2x} \][/tex]
Now, the equation is:
[tex]\[ 16x + 8 = 6 \cdot 2^{2x} \][/tex]
4. Explore possible simple solutions directly:
- For [tex]\(x = 1\)[/tex]:
[tex]\[ 16(1) + 8 = 24 \cdot 4^{1-1} \][/tex]
[tex]\[ 16 + 8 = 24 \cdot 1 \][/tex]
[tex]\[ 24 = 24 \][/tex]
Thus, [tex]\(x = 1\)[/tex] is a solution.
5. Consider the transformation to logarithmic form for a more general solution:
Rewrite the equation separating the components not involving [tex]\(x\)[/tex]:
[tex]\[ 16x + 8 = 6 \cdot 2^{2x} \implies 6 \cdot 2^{2x} - 16x - 8 = 0 \][/tex]
Here, we notice a sophisticated transcendental equation form that general solutions might involve special functions, particularly Lambert W function.
6. Apply Lambert W function (if familiar) or recognize complex transcendental solutions:
Suppose we solve the equation [tex]\(6 \cdot 2^{2x} = 16x + 8\)[/tex]:
By recognizing that exact algebraic solutions are complex, solutions involve using Lambert W function to express formally:
[tex]\[ 2^{2x} = \frac{16x + 8}{6} \implies e^{2x \ln 2} = \frac{16x+8}{6} \][/tex]
Transform for standard form involving Lambert W:
Recognize complexity and finalize;
Therefore the general solution involving Lambert W function can be:
[tex]\[ x = \frac{-\log(2) - LambertW(-3\ln(2)/8)}{2\ln(2)} \quad (alongside ~ x = 1) \][/tex]
The complete solutions to the equation are:
[tex]\[ x = 1, \quad \text{and} \quad x = \frac{-\log(2) - LambertW\left(-\frac{3 \log(2)}{8}\right)}{2\log(2)} \][/tex]