\begin{tabular}{|c|c|}
\hline
14.6 & 11.2 \\
\hline
15.9 & 9.2 \\
\hline
\end{tabular}

For each table, calculate the mean weight for each group, [tex]$\bar{x}_A$[/tex] and [tex]$\bar{x}_B$[/tex], and find the difference between the mean of group A and the mean of group B ([tex]$\bar{x}_A-\bar{x}_B$[/tex]).

Type the correct answer in each box.

1. After the first randomization, [tex]$\bar{x}_A$[/tex] is [tex]$\square$[/tex], [tex]$\bar{x}_B$[/tex] is [tex]$\square$[/tex], and [tex]$\left(\bar{x}_A-\bar{x}_B\right)$[/tex] is [tex]$\square$[/tex].

2. After the second randomization, [tex]$\bar{x}_A$[/tex] is [tex]$\square$[/tex], [tex]$\bar{x}_B$[/tex] is [tex]$\square$[/tex], and [tex]$\left(\bar{x}_A-\bar{x}_B\right)$[/tex] is [tex]$\square$[/tex].

3. After the third randomization, [tex]$\bar{x}_A$[/tex] is [tex]$\square$[/tex], [tex]$\bar{x}_B$[/tex] is [tex]$\square$[/tex], and [tex]$\left(\bar{x}_A-\bar{x}_B\right)$[/tex] is [tex]$\square$[/tex].

Part B



Answer :

Below is the detailed step-by-step solution.

Let's denote the weights in the groups as follows:

Group A: 14.6, 15.9
Group B: 11.2, 9.2

Step 1: Calculate the mean weight for each group.

To calculate the mean for Group A ([tex]\(\bar{x}_A\)[/tex]):
[tex]\[ \bar{x}_A = \frac{14.6 + 15.9}{2} = \frac{30.5}{2} = 15.25 \][/tex]

To calculate the mean for Group B ([tex]\(\bar{x}_B\)[/tex]):
[tex]\[ \bar{x}_B = \frac{11.2 + 9.2}{2} = \frac{20.4}{2} = 10.2 \][/tex]

Step 2: Calculate the difference between the mean weights of Group A and Group B.

[tex]\[ \bar{x}_A - \bar{x}_B = 15.25 - 10.2 = 5.05 \][/tex]

Results for each randomization:
1. After the first randomization:
- [tex]\(\bar{x}_A\)[/tex] is 15.25,
- [tex]\(\bar{x}_B\)[/tex] is 10.2,
- [tex]\(\bar{x}_A - \bar{x}_B\)[/tex] is 5.05.

2. After the second randomization:
- [tex]\(\bar{x}_A\)[/tex] is 15.25,
- [tex]\(\bar{x}_B\)[/tex] is 10.2,
- [tex]\(\bar{x}_A - \bar{x}_B\)[/tex] is 5.05.

3. After the third randomization:
- [tex]\(\bar{x}_A\)[/tex] is 15.25,
- [tex]\(\bar{x}_B\)[/tex] is 10.2,
- [tex]\(\bar{x}_A - \bar{x}_B\)[/tex] is 5.05.

Summarized in boxes:

1. After the first randomization:
- [tex]\(\bar{x}_A\)[/tex] is [tex]\(\boxed{15.25}\)[/tex],
- [tex]\(\bar{x}_B\)[/tex] is [tex]\(\boxed{10.2}\)[/tex],
- [tex]\(\bar{x}_A - \bar{x}_B\)[/tex] is [tex]\(\boxed{5.05}\)[/tex].

2. After the second randomization:
- [tex]\(\bar{x}_A\)[/tex] is [tex]\(\boxed{15.25}\)[/tex],
- [tex]\(\bar{x}_B\)[/tex] is [tex]\(\boxed{10.2}\)[/tex],
- [tex]\(\bar{x}_A - \bar{x}_B\)[/tex] is [tex]\(\boxed{5.05}\)[/tex].

3. After the third randomization:
- [tex]\(\bar{x}_A\)[/tex] is [tex]\(\boxed{15.25}\)[/tex],
- [tex]\(\bar{x}_B\)[/tex] is [tex]\(\boxed{10.2}\)[/tex],
- [tex]\(\bar{x}_A - \bar{x}_B\)[/tex] is [tex]\(\boxed{5.05}\)[/tex].