Find: [tex]\left(6 m^5+3-m^3-4 m\right)-\left(-m^5+2 m^3-4 m+6\right)[/tex]

1. Write the subtraction of a polynomial expression as the addition of the additive inverse:
[tex]\left(6 m^5+3-m^3-4 m\right)+\left(m^5-2 m^3+4 m-6\right)[/tex]

2. Rewrite terms that are subtracted as the addition of the opposite:
[tex]6 m^5+3+\left(-m^3\right)+(-4 m)+m^5+\left(-2 m^3\right)+4 m+(-6)[/tex]

3. Group like terms:
[tex]\left[6 m^5+m^5\right]+[3+(-6)]+\left[\left(-m^3\right)+\left(-2 m^3\right)\right]+[(-4 m)+4 m][/tex]

4. Combine like terms:
[tex](6m^5 + m^5) + (3 + (-6)) + (-m^3 + -2m^3) + (-4m + 4m)[/tex]

5. Write the resulting polynomial in standard form:
[tex]7m^5 - 3m^3 - 3[/tex]



Answer :

Let's solve the polynomial subtraction step-by-step:

1. Write subtraction as addition of the additive inverse:
[tex]\[ (6m^5 + 3 - m^3 - 4m) - (-m^5 + 2m^3 - 4m + 6) \][/tex]
becomes
[tex]\[ (6m^5 + 3 - m^3 - 4m) + (m^5 - 2m^3 + 4m - 6) \][/tex]

2. Rewrite terms that are subtracted as addition of the opposite:
[tex]\[ 6m^5 + 3 + (-m^3) + (-4m) + m^5 + (-2m^3) + 4m + (-6) \][/tex]

3. Group like terms:
[tex]\[ (6m^5 + m^5) + (3 + (-6)) + (-m^3 + -2m^3) + (-4m + 4m) \][/tex]

4. Combine like terms:
- For [tex]\(m^5\)[/tex] terms: [tex]\(6m^5 + m^5 = 7m^5\)[/tex]
- For constants: [tex]\(3 + (-6) = -3\)[/tex]
- For [tex]\(m^3\)[/tex] terms: [tex]\(-m^3 + -2m^3 = -3m^3\)[/tex]
- For [tex]\(m\)[/tex] terms: [tex]\(-4m + 4m = 0\)[/tex]

5. Write the resulting polynomial in standard form:
[tex]\[ 7m^5 - 3m^3 + 0m - 3 \][/tex]

So, the final result is:
[tex]\[ 7m^5 - 3m^3 - 3 \][/tex]

Thus, the simplified polynomial is:
[tex]\[ \boxed{7m^5 - 3m^3 - 3} \][/tex]

Other Questions