Answer :
To determine the truck's velocity, we can use the fundamental formula from physics that relates momentum, mass, and velocity:
[tex]\[ \text{momentum} = \text{mass} \times \text{velocity} \][/tex]
Given:
- The truck's momentum ([tex]\(p\)[/tex]) is [tex]\(40,120 \, \text{kg} \cdot \frac{\text{m}}{\text{s}}\)[/tex]
- The truck's mass ([tex]\(m\)[/tex]) is [tex]\(1,180 \, \text{kg}\)[/tex]
We need to find the truck's velocity ([tex]\(v\)[/tex]). Rearrange the formula to solve for velocity:
[tex]\[ v = \frac{\text{momentum}}{\text{mass}} \][/tex]
Substitute the given values into the equation:
[tex]\[ v = \frac{40,120 \, \text{kg} \cdot \frac{\text{m}}{\text{s}}}{1,180 \, \text{kg}} \][/tex]
When you perform this division:
[tex]\[ v = \frac{40,120}{1,180} \, \frac{\text{m}}{\text{s}} \][/tex]
This simplifies to:
[tex]\[ v = 34 \, \frac{\text{m}}{\text{s}} \][/tex]
Thus, the truck's velocity is [tex]\(34 \, \frac{\text{m}}{\text{s}}\)[/tex].
So, the correct answer is:
[tex]\[ \boxed{34 \frac{ m }{ s }} \][/tex]
[tex]\[ \text{momentum} = \text{mass} \times \text{velocity} \][/tex]
Given:
- The truck's momentum ([tex]\(p\)[/tex]) is [tex]\(40,120 \, \text{kg} \cdot \frac{\text{m}}{\text{s}}\)[/tex]
- The truck's mass ([tex]\(m\)[/tex]) is [tex]\(1,180 \, \text{kg}\)[/tex]
We need to find the truck's velocity ([tex]\(v\)[/tex]). Rearrange the formula to solve for velocity:
[tex]\[ v = \frac{\text{momentum}}{\text{mass}} \][/tex]
Substitute the given values into the equation:
[tex]\[ v = \frac{40,120 \, \text{kg} \cdot \frac{\text{m}}{\text{s}}}{1,180 \, \text{kg}} \][/tex]
When you perform this division:
[tex]\[ v = \frac{40,120}{1,180} \, \frac{\text{m}}{\text{s}} \][/tex]
This simplifies to:
[tex]\[ v = 34 \, \frac{\text{m}}{\text{s}} \][/tex]
Thus, the truck's velocity is [tex]\(34 \, \frac{\text{m}}{\text{s}}\)[/tex].
So, the correct answer is:
[tex]\[ \boxed{34 \frac{ m }{ s }} \][/tex]