Suppose a truck has a momentum of [tex]$40,120 \, \text{kg} \cdot \frac{\text{m}}{\text{s}}$[/tex] and a mass of [tex]$1,180 \, \text{kg}$[/tex]. What is the truck's velocity?

A. [tex]4.7 \times 10^7 \, \frac{\text{m}}{\text{s}}[/tex]
B. [tex]47 \times 10^7 \, \frac{\text{m}}{\text{s}}[/tex]
C. [tex]34 \, \frac{\text{m}}{\text{s}}[/tex]
D. [tex]3.4 \, \frac{\text{m}}{\text{s}}[/tex]



Answer :

To determine the truck's velocity, we can use the fundamental formula from physics that relates momentum, mass, and velocity:

[tex]\[ \text{momentum} = \text{mass} \times \text{velocity} \][/tex]

Given:
- The truck's momentum ([tex]\(p\)[/tex]) is [tex]\(40,120 \, \text{kg} \cdot \frac{\text{m}}{\text{s}}\)[/tex]
- The truck's mass ([tex]\(m\)[/tex]) is [tex]\(1,180 \, \text{kg}\)[/tex]

We need to find the truck's velocity ([tex]\(v\)[/tex]). Rearrange the formula to solve for velocity:

[tex]\[ v = \frac{\text{momentum}}{\text{mass}} \][/tex]

Substitute the given values into the equation:

[tex]\[ v = \frac{40,120 \, \text{kg} \cdot \frac{\text{m}}{\text{s}}}{1,180 \, \text{kg}} \][/tex]

When you perform this division:

[tex]\[ v = \frac{40,120}{1,180} \, \frac{\text{m}}{\text{s}} \][/tex]

This simplifies to:

[tex]\[ v = 34 \, \frac{\text{m}}{\text{s}} \][/tex]

Thus, the truck's velocity is [tex]\(34 \, \frac{\text{m}}{\text{s}}\)[/tex].

So, the correct answer is:

[tex]\[ \boxed{34 \frac{ m }{ s }} \][/tex]