Find the length of the arc, [tex]s[/tex], on a circle of radius [tex]r[/tex] intercepted by a central angle [tex]\theta[/tex]. Express the arc length in terms of [tex]\pi[/tex]. Then round your answer to two decimal places.

Radius: [tex]r = 16[/tex] inches
Central angle: [tex]\theta = 175^{\circ}[/tex]

[tex]s = \square[/tex] inches

(Simplify your answer. Type an exact answer in terms of [tex]\pi[/tex]. Use integers or fractions for any numbers in the expression.)



Answer :

To find the length of the arc ([tex]\(s\)[/tex]) intercepted by a central angle ([tex]\(\theta\)[/tex]) on a circle with a given radius ([tex]\(r\)[/tex]), we follow these steps:

1. Convert the central angle [tex]\(\theta\)[/tex] from degrees to radians:

The formula for converting degrees to radians is:
[tex]\[ \text{Radians} = \theta \times \left( \frac{\pi}{180} \right) \][/tex]

Given:
[tex]\[ \theta = 175^\circ \][/tex]

So,
[tex]\[ \theta_{\text{radians}} = 175 \times \left( \frac{\pi}{180} \right) = \frac{175\pi}{180} = \frac{35\pi}{36} \text{ radians} \][/tex]

2. Find the length of the arc [tex]\(s\)[/tex] using the formula [tex]\( s = r \theta_{\text{radians}} \)[/tex]:

Given:
[tex]\[ r = 16 \text{ inches} \][/tex]

The arc length formula is:
[tex]\[ s = 16 \times \frac{35\pi}{36} \][/tex]

Simplify the fraction:
[tex]\[ s = \frac{16 \times 35\pi}{36} = \frac{560\pi}{36} = \frac{140\pi}{9} \][/tex]

Thus, the exact expression for the arc length [tex]\(s\)[/tex] in terms of [tex]\(\pi\)[/tex] is:
[tex]\[ s = \frac{140\pi}{9} \text{ inches} \][/tex]

3. Round the arc length to two decimal places:

To round the arc length to two decimal places, we can evaluate the approximate value of [tex]\(\frac{140\pi}{9}\)[/tex] using [tex]\(\pi \approx 3.14159\)[/tex]:

[tex]\[ \frac{140\pi}{9} \approx \frac{140 \times 3.14159}{9} \approx 48.87 \text{ inches} \][/tex]

So, the arc length [tex]\(s\)[/tex] rounded to two decimal places is:
[tex]\[ s \approx 48.87 \text{ inches} \][/tex]

Hence, the exact answer in terms of [tex]\(\pi\)[/tex] is [tex]\(\frac{140\pi}{9}\)[/tex] inches, and the rounded answer to two decimal places is 48.87 inches.