Use the table to graph [tex]y=3^x[/tex].

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
0 & \\
\hline
1 & \\
\hline
2 & \\
\hline
\end{tabular}



Answer :

To graph the equation [tex]\( y = 3^x \)[/tex], we'll first fill in the table with the corresponding [tex]\( y \)[/tex] values for the given [tex]\( x \)[/tex] values.

Here is the table filled with the [tex]\( y \)[/tex] values:

[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline 0 & 1 \\ \hline 1 & 3 \\ \hline 2 & 9 \\ \hline \end{tabular} \][/tex]

Now, let’s plot these points on a coordinate graph. The points are:
- [tex]\((0, 1)\)[/tex]
- [tex]\((1, 3)\)[/tex]
- [tex]\((2, 9)\)[/tex]

Here’s how you can graph these points:

1. Draw two perpendicular lines on the graph paper. Label the horizontal line as the [tex]\( x \)[/tex]-axis and the vertical line as the [tex]\( y \)[/tex]-axis.
2. Mark equal intervals on both the [tex]\( x \)[/tex]-axis and the [tex]\( y \)[/tex]-axis. Ensure the intervals are large enough to comfortably accommodate the points you need to plot.
3. Plot the point [tex]\((0, 1)\)[/tex]. Start at the origin (0, 0). Move 0 units right (since [tex]\( x = 0 \)[/tex]) and 1 unit up (since [tex]\( y = 1 \)[/tex]). Place a dot at this point.
4. Plot the point [tex]\((1, 3)\)[/tex]. Start at the origin. Move 1 unit to the right and 3 units up. Place a dot at this point.
5. Plot the point [tex]\((2, 9)\)[/tex]. Start at the origin. Move 2 units to the right and 9 units up. Place a dot at this point.

Now connect the points with a smooth curve, since the graph of [tex]\( y = 3^x \)[/tex] is an exponential curve.

Your graph should rise steeply to the right as [tex]\( x \)[/tex] increases, illustrating the exponential growth of the function.