Find the inverse of the function.

[tex]\[ y = 2x^2 - 4 \][/tex]

A. [tex]\[ y = \pm \sqrt{x} + 2 \][/tex]

B. [tex]\[ y = \pm \sqrt{\frac{x+4}{2}} \][/tex]

C. [tex]\[ y = \pm \frac{\sqrt{x+4}}{2} \][/tex]

D. [tex]\[ y = \pm \sqrt{x} - 2 \][/tex]



Answer :

To find the inverse of the function [tex]\( y = 2x^2 - 4 \)[/tex], we need to follow these steps:

1. Start by interchanging [tex]\(x\)[/tex] and [tex]\(y\)[/tex] in the given equation.
2. Solve the resulting equation for [tex]\(y\)[/tex].

Let's begin:

### Step 1: Interchange [tex]\(x\)[/tex] and [tex]\(y\)[/tex]

Given:
[tex]\[ y = 2x^2 - 4 \][/tex]

Interchange [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ x = 2y^2 - 4 \][/tex]

### Step 2: Solve for [tex]\(y\)[/tex]

Now we solve the equation [tex]\( x = 2y^2 - 4 \)[/tex] for [tex]\(y\)[/tex].

First, isolate the term containing [tex]\(y\)[/tex]:
[tex]\[ x + 4 = 2y^2 \][/tex]

Divide both sides by 2:
[tex]\[ \frac{x + 4}{2} = y^2 \][/tex]

Take the square root of both sides:
[tex]\[ y = \pm \sqrt{\frac{x + 4}{2}} \][/tex]

Therefore, the inverse of the function [tex]\( y = 2x^2 - 4 \)[/tex] is:
[tex]\[ y = \pm \sqrt{\frac{x + 4}{2}} \][/tex]

This matches one of the given options:
[tex]\[ y = \pm \sqrt{\frac{x + 4}{2}} \][/tex]

Thus, the correct answer is:
[tex]\[ y = \pm \sqrt{\frac{x + 4}{2}} \][/tex]