Answer :
Let's evaluate each expression step-by-step to determine which one has a positive value.
a) [tex]\(2 - 4\)[/tex]:
- Subtracting 4 from 2 yields:
[tex]\[ 2 - 4 = -2 \][/tex]
Thus, the value of this expression is [tex]\(-2\)[/tex], which is negative.
b) [tex]\(12 \div (-4)\)[/tex]:
- Dividing 12 by [tex]\(-4\)[/tex] gives:
[tex]\[ 12 \div (-4) = -3 \][/tex]
Thus, the value of this expression is [tex]\(-3\)[/tex], which is negative.
c) [tex]\(-3 + (-7)\)[/tex]:
- Adding [tex]\(-3\)[/tex] and [tex]\(-7\)[/tex] results in:
[tex]\[ -3 + (-7) = -10 \][/tex]
Thus, the value of this expression is [tex]\(-10\)[/tex], which is negative.
d) [tex]\((-5) \times (-9)\)[/tex]:
- Multiplying [tex]\(-5\)[/tex] by [tex]\(-9\)[/tex] results in:
[tex]\[ (-5) \times (-9) = 45 \][/tex]
Thus, the value of this expression is [tex]\(45\)[/tex], which is positive.
Among the given expressions, the only one that yields a positive value is:
[tex]\[ \mathbf{d) \ (-5) \times (-9) = 45} \][/tex]
So, the expression that has a positive value is [tex]\( \mathbf{d)} \)[/tex].
a) [tex]\(2 - 4\)[/tex]:
- Subtracting 4 from 2 yields:
[tex]\[ 2 - 4 = -2 \][/tex]
Thus, the value of this expression is [tex]\(-2\)[/tex], which is negative.
b) [tex]\(12 \div (-4)\)[/tex]:
- Dividing 12 by [tex]\(-4\)[/tex] gives:
[tex]\[ 12 \div (-4) = -3 \][/tex]
Thus, the value of this expression is [tex]\(-3\)[/tex], which is negative.
c) [tex]\(-3 + (-7)\)[/tex]:
- Adding [tex]\(-3\)[/tex] and [tex]\(-7\)[/tex] results in:
[tex]\[ -3 + (-7) = -10 \][/tex]
Thus, the value of this expression is [tex]\(-10\)[/tex], which is negative.
d) [tex]\((-5) \times (-9)\)[/tex]:
- Multiplying [tex]\(-5\)[/tex] by [tex]\(-9\)[/tex] results in:
[tex]\[ (-5) \times (-9) = 45 \][/tex]
Thus, the value of this expression is [tex]\(45\)[/tex], which is positive.
Among the given expressions, the only one that yields a positive value is:
[tex]\[ \mathbf{d) \ (-5) \times (-9) = 45} \][/tex]
So, the expression that has a positive value is [tex]\( \mathbf{d)} \)[/tex].