Answer :
To solve the equation:
[tex]\[ |6y - 3| + 8 = 35 \][/tex]
First, isolate the absolute value expression by subtracting 8 from both sides:
[tex]\[ |6y - 3| + 8 - 8 = 35 - 8 \][/tex]
[tex]\[ |6y - 3| = 27 \][/tex]
Now, we need to solve the absolute value equation. Recall that if [tex]\(|A| = B\)[/tex], then [tex]\(A = B\)[/tex] or [tex]\(A = -B\)[/tex]. Applying this property here:
[tex]\[ 6y - 3 = 27 \quad \text{or} \quad 6y - 3 = -27 \][/tex]
Let's solve each case separately.
### Case 1: [tex]\(6y - 3 = 27\)[/tex]
Add 3 to both sides:
[tex]\[ 6y - 3 + 3 = 27 + 3 \][/tex]
[tex]\[ 6y = 30 \][/tex]
Divide by 6:
[tex]\[ y = \frac{30}{6} \][/tex]
[tex]\[ y = 5 \][/tex]
### Case 2: [tex]\(6y - 3 = -27\)[/tex]
Add 3 to both sides:
[tex]\[ 6y - 3 + 3 = -27 + 3 \][/tex]
[tex]\[ 6y = -24 \][/tex]
Divide by 6:
[tex]\[ y = \frac{-24}{6} \][/tex]
[tex]\[ y = -4 \][/tex]
Therefore, the solutions for the equation [tex]\(|6y - 3| + 8 = 35\)[/tex] are:
[tex]\[ y = 5 \quad \text{or} \quad y = -4 \][/tex]
[tex]\[ |6y - 3| + 8 = 35 \][/tex]
First, isolate the absolute value expression by subtracting 8 from both sides:
[tex]\[ |6y - 3| + 8 - 8 = 35 - 8 \][/tex]
[tex]\[ |6y - 3| = 27 \][/tex]
Now, we need to solve the absolute value equation. Recall that if [tex]\(|A| = B\)[/tex], then [tex]\(A = B\)[/tex] or [tex]\(A = -B\)[/tex]. Applying this property here:
[tex]\[ 6y - 3 = 27 \quad \text{or} \quad 6y - 3 = -27 \][/tex]
Let's solve each case separately.
### Case 1: [tex]\(6y - 3 = 27\)[/tex]
Add 3 to both sides:
[tex]\[ 6y - 3 + 3 = 27 + 3 \][/tex]
[tex]\[ 6y = 30 \][/tex]
Divide by 6:
[tex]\[ y = \frac{30}{6} \][/tex]
[tex]\[ y = 5 \][/tex]
### Case 2: [tex]\(6y - 3 = -27\)[/tex]
Add 3 to both sides:
[tex]\[ 6y - 3 + 3 = -27 + 3 \][/tex]
[tex]\[ 6y = -24 \][/tex]
Divide by 6:
[tex]\[ y = \frac{-24}{6} \][/tex]
[tex]\[ y = -4 \][/tex]
Therefore, the solutions for the equation [tex]\(|6y - 3| + 8 = 35\)[/tex] are:
[tex]\[ y = 5 \quad \text{or} \quad y = -4 \][/tex]