What are the vertices of [tex]$4x^2 + 9y^2 = 36$[/tex]?

A. [tex]$ (\mp 3, 2) $[/tex]
B. [tex][tex]$ (3, 0) $[/tex][/tex]
C. [tex]$ (\pm 3, 0) $[/tex]
D. [tex]$ (\pm 3, 2) $[/tex]



Answer :

To find the vertices of the ellipse given by the equation [tex]\(4x^2 + 9y^2 = 36\)[/tex], follow these steps:

1. Rewrite the Ellipse Equation in Standard Form:
We start with the given equation:
[tex]\[ 4x^2 + 9y^2 = 36 \][/tex]

To convert the equation to the standard form of an ellipse, we divide all terms by 36:
[tex]\[ \frac{4x^2}{36} + \frac{9y^2}{36} = \frac{36}{36} \][/tex]

Simplifying the fractions, we get:
[tex]\[ \frac{x^2}{9} + \frac{y^2}{4} = 1 \][/tex]

This is now in the standard form of an ellipse [tex]\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)[/tex], where [tex]\(a^2 = 9\)[/tex] and [tex]\(b^2 = 4\)[/tex].

2. Identify [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
From the standard form equation:
[tex]\[ a^2 = 9, \quad \text{so} \quad a = \sqrt{9} = 3 \][/tex]
[tex]\[ b^2 = 4, \quad \text{so} \quad b = \sqrt{4} = 2 \][/tex]

3. Determine the Vertices:
In the standard form [tex]\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)[/tex], the vertices of the ellipse are located at [tex]\((\pm a, 0)\)[/tex] and [tex]\((0, \pm b)\)[/tex].

Therefore, the vertices for our given ellipse are:
[tex]\[ (\pm 3, 0) \quad \text{and} \quad (0, \pm 2) \][/tex]

4. List All Vertices:
Writing out these points explicitly, the vertices are:
[tex]\[ (3, 0), \quad (-3, 0), \quad (0, 2), \quad (0, -2) \][/tex]

Thus, the vertices of the ellipse [tex]\(4x^2 + 9y^2 = 36\)[/tex] are [tex]\(\boxed{( \pm 3, 0), (0, \pm 2)}\)[/tex]. The correct choice among the given options is [tex]\(( \pm 3, 0)\)[/tex].