What is the product?

[tex]\[
\begin{array}{l}
\left(y^2 + 3y + 7\right) \left(8y^2 + y + 1\right) \\
A. \ 8y^4 + 24y^3 + 60y^2 + 10y + 7 \\
B. \ 8y^4 + 25y^3 + 4y^2 + 10y + 7 \\
C. \ 8y^4 + 25y^3 + 60y^2 + 7y + 7 \\
D. \ 8y^4 + 25y^3 + 60y^2 + 10y + 7 \\
\end{array}
\][/tex]



Answer :

To find the product of the polynomials [tex]\((y^2 + 3y + 7)\)[/tex] and [tex]\((8y^2 + y + 1)\)[/tex], we can use polynomial multiplication. Here, we multiply each term in the first polynomial by each term in the second polynomial and then combine like terms.

The polynomials given are:
[tex]\[ (y^2 + 3y + 7) \quad \text{and} \quad (8y^2 + y + 1) \][/tex]

Following are steps to multiply these two polynomials:

1. Distribute [tex]\(y^2\)[/tex] to each term in the second polynomial:
[tex]\[ y^2 \cdot (8y^2 + y + 1) = 8y^4 + y^3 + y^2 \][/tex]

2. Distribute [tex]\(3y\)[/tex] to each term in the second polynomial:
[tex]\[ 3y \cdot (8y^2 + y + 1) = 24y^3 + 3y^2 + 3y \][/tex]

3. Distribute [tex]\(7\)[/tex] to each term in the second polynomial:
[tex]\[ 7 \cdot (8y^2 + y + 1) = 56y^2 + 7y + 7 \][/tex]

Now, add all these results together:
[tex]\[ 8y^4 + y^3 + y^2 + 24y^3 + 3y^2 + 3y + 56y^2 + 7y + 7 \][/tex]

Combine like terms:
[tex]\[ 8y^4 + (1y^3 + 24y^3) + (1y^2 + 3y^2 + 56y^2) + (3y + 7y) + 7 \][/tex]

Simplify:
[tex]\[ 8y^4 + 25y^3 + 60y^2 + 10y + 7 \][/tex]

Therefore, the product of the polynomials [tex]\((y^2 + 3y + 7)\)[/tex] and [tex]\((8y^2 + y + 1)\)[/tex] is:
[tex]\[ \boxed{8y^4 + 25y^3 + 60y^2 + 10y + 7} \][/tex]